gptkbp:instance_of
|
gptkb:neural_networks
|
gptkbp:architectural_style
|
Wide Residual Blocks
|
gptkbp:coat_of_arms
|
Convolutional Layers
Fully Connected Layers
Activation Functions
|
gptkbp:developed_by
|
Zagoruyko and Komodakis
|
gptkbp:has_achieved
|
State-of-the-art performance
|
gptkbp:has_feature
|
gptkb:Batch_Normalization
gptkb:Dropout
|
gptkbp:has_function
|
Width Multiplier
|
https://www.w3.org/2000/01/rdf-schema#label
|
Wide Res Net
|
gptkbp:improves
|
gptkb:Res_Net
|
gptkbp:is_compared_to
|
gptkb:Dense_Net
Standard Res Net
|
gptkbp:is_evaluated_by
|
gptkb:Image_Net
gptkb:SVHN
gptkb:Celeb_A
gptkb:Fashion_MNIST
gptkb:MNIST
Kaggle Competitions
LFW (Labeled Faces in the Wild)
|
gptkbp:is_implemented_in
|
gptkb:Tensor_Flow
gptkb:Py_Torch
|
gptkbp:is_influenced_by
|
gptkb:Res_Net
|
gptkbp:is_known_for
|
Scalability
High Capacity
Robustness to Noise
Reduced Overfitting
Flexibility in Architecture
Higher accuracy than standard Res Net
Wide Layers
|
gptkbp:is_optimized_for
|
Speed and Accuracy
|
gptkbp:is_part_of
|
gptkb:Computer_Vision
gptkb:Artificial_Intelligence
gptkb:machine_learning
Deep Neural Networks
Neural Network Architectures
|
gptkbp:is_related_to
|
gptkb:Deep_Learning
|
gptkbp:is_trained_in
|
gptkb:CIFAR-10
gptkb:Tiny_Image_Net
gptkb:CIFAR-100
|
gptkbp:is_used_in
|
gptkb:Augmented_Reality
gptkb:Autonomous_Vehicles
gptkb:Generative_Adversarial_Networks
gptkb:virtual_reality
gptkb:stage_adaptation
gptkb:machine_learning
Image Classification
Object Detection
Facial Recognition
Real-time Applications
Video Analysis
Semantic Segmentation
Medical Image Analysis
|
gptkbp:training
|
gptkb:Adam_Optimizer
Stochastic Gradient Descent
|
gptkbp:uses
|
Residual Learning
|
gptkbp:year_established
|
gptkb:2016
|
gptkbp:bfsParent
|
gptkb:Deep_Residual_Learning_for_Image_Recognition
|
gptkbp:bfsLayer
|
5
|