Adam Optimizer

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:benefits computational efficiency
adaptive learning rate
sensitivity to hyperparameters
gptkbp:can_be_combined_with momentum and RMSProp
gptkbp:developed_by gptkb:D._P_Kingma
https://www.w3.org/2000/01/rdf-schema#label Adam Optimizer
gptkbp:input_output model weights
optimized parameters
gptkbp:is widely used
easy to implement
used in natural language processing
used in reinforcement learning
suitable for large datasets
a default choice for many applications
a first-order optimization algorithm
a key component in many deep learning frameworks
a method for adaptive learning rates
a method for stochastic optimization
a method that uses moving averages of gradients
a popular choice among practitioners
a variant of stochastic gradient descent
designed for non-stationary objectives
popular in deep learning
robust to noisy gradients
used in computer vision
a method that adjusts learning rates based on past gradients
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:orbital_period beta1
beta2
epsilon
learning rate
gptkbp:performance often used in practice
generally better than SGD
works well with sparse gradients
gptkbp:related_to stochastic gradient descent
adaptive gradient methods
gptkbp:requires tuning of hyperparameters
initialization of parameters
gptkbp:used_for training neural networks
gptkbp:used_in gptkb:machine_learning
gptkbp:variant gptkb:Ada_Max
gptkb:Adam_W
Nadam
gptkbp:year_established gptkb:2014
gptkbp:bfsParent gptkb:Feedforward_Neural_Network
gptkb:neural_networks
gptkb:Variational_Autoencoders
gptkbp:bfsLayer 4