Statements (59)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:Data
|
gptkbp:analyzes |
confusion matrix
scatter plots |
gptkbp:can_transform_into |
data augmentation techniques
|
gptkbp:composed_of |
28x28 pixel images
|
gptkbp:consists_of |
10,000 test images
60,000 training images |
gptkbp:contains |
handwritten digits
|
gptkbp:created_by |
gptkb:Yann_Le_Cun
|
https://www.w3.org/2000/01/rdf-schema#label |
MNIST
|
gptkbp:is_a |
benchmark dataset
|
gptkbp:is_accessible_by |
gptkb:UCI_Machine_Learning_Repository
gptkb:Kaggle |
gptkbp:is_analyzed_in |
statistical methods
|
gptkbp:is_associated_with |
digit recognition
|
gptkbp:is_available_in |
public domain
|
gptkbp:is_cited_in |
research papers
|
gptkbp:is_compared_to |
gptkb:Fashion-MNIST
gptkb:CIFAR-10 |
gptkbp:is_evaluated_by |
accuracy metrics
|
gptkbp:is_implemented_in |
gptkb:Tensor_Flow
gptkb:Py_Torch |
gptkbp:is_part_of |
gptkb:AI_technology
AI competitions computer science education data science projects deep learning frameworks pattern recognition machine learning competitions image datasets data analysis tasks academic curricula machine learning benchmarks data mining tasks computer vision datasets artificial intelligence education benchmarking challenges pattern classification tasks |
gptkbp:is_popular_in |
computer vision
|
gptkbp:is_preprocessed_by |
normalization
|
gptkbp:is_tested_for |
logistic regression
support vector machines convolutional neural networks k-nearest neighbors random forests |
gptkbp:is_used_for |
hyperparameter tuning
model evaluation feature extraction algorithm comparison neural network training |
gptkbp:is_used_in |
image classification
deep learning tutorials |
gptkbp:is_utilized_in |
educational purposes
|
gptkbp:label |
digit labels
|
gptkbp:originated_in |
gptkb:NIST
|
gptkbp:performance |
image processing algorithms
|
gptkbp:used_for |
gptkb:machine_learning
|
gptkbp:bfsParent |
gptkb:machine_learning
|
gptkbp:bfsLayer |
3
|