Deep Residual Learning for Image Recognition

GPTKB entity

Statements (48)
Predicate Object
gptkbp:instance_of gptkb:academic_journals
gptkbp:application Image Classification
gptkbp:architecture gptkb:Convolutional_Neural_Network_(CNN)
gptkbp:author gptkb:Shaoqing_Ren
gptkb:Kaiming_He
gptkb:Xiangyu_Zhang
Jian Sun
gptkbp:challenges Utilizes skip connections for better feature propagation
Facilitates training of networks with hundreds of layers
Achieves better performance with fewer parameters
Deeper networks can be trained effectively
Demonstrated effectiveness on various benchmarks
Encourages exploration of new architectures in deep learning
Improved accuracy with increased depth
Introduced the concept of residual blocks
Residual connections mitigate vanishing gradient problem
Promotes the use of deeper architectures in practice
gptkbp:contribution Advancement of deep learning techniques
Introduction of residual networks (Res Nets)
gptkbp:feature gptkb:Batch_Normalization
gptkb:Dropout
Data Augmentation
Weight Initialization
Non-linear Activation Functions
Gradient Descent Optimization
Layer-wise training
https://www.w3.org/2000/01/rdf-schema#label Deep Residual Learning for Image Recognition
gptkbp:impact Improved training of deep neural networks
gptkbp:influence Inspired further research in deep learning architectures
gptkbp:is_cited_in Highly cited
gptkbp:key_concept Identity Mapping
Skip Connections
Residual Learning
gptkbp:performance Top-5 Error Rate
gptkbp:provides_information_on gptkb:Image_Net
gptkbp:published_in gptkb:Proceedings_of_the_IEEE_Conference_on_Computer_Vision_and_Pattern_Recognition_(CVPR)
gptkbp:published_year gptkb:2016
gptkbp:related_to gptkb:Computer_Vision
gptkb:Artificial_Intelligence
gptkb:Deep_Learning
gptkbp:research Deep Learning Techniques
gptkbp:result Achieved state-of-the-art performance on Image Net
gptkbp:subsequent_work gptkb:Dense_Net
gptkb:Res_Ne_Xt
gptkb:Res_Net_Variants
gptkb:Wide_Res_Net
gptkbp:bfsParent gptkb:Ilya_Sutskever
gptkbp:bfsLayer 4