Deep Residual Learning for Image Recognition
GPTKB entity
Statements (51)
Predicate | Object |
---|---|
gptkbp:instanceOf |
Research Paper
|
gptkbp:addresses |
Degradation problem in deep networks
|
gptkbp:analyzes |
Network architectures
|
gptkbp:appliesTo |
Computer_Vision
|
gptkbp:author |
gptkb:Kaiming_He
|
gptkbp:citedBy |
Over 10000 times
|
gptkbp:completed |
State-of-the-art performance
|
gptkbp:contains |
Experimental results
|
gptkbp:designedBy |
Identity mapping
|
gptkbp:developedBy |
gptkb:Microsoft_Research
|
gptkbp:enhances |
Feature extraction
|
gptkbp:exhibits |
Better accuracy with deeper networks
|
gptkbp:focusesOn |
Image Recognition
|
gptkbp:hasCollaboratedWith |
Other research institutions
|
https://www.w3.org/2000/01/rdf-schema#label |
Deep Residual Learning for Image Recognition
|
gptkbp:improves |
Training of deep neural networks
|
gptkbp:includes |
gptkb:ImageNet_dataset
|
gptkbp:influences |
Subsequent research in deep learning
|
gptkbp:introduced |
Residual_Networks_(ResNets)
|
gptkbp:involves |
Optimization techniques
|
gptkbp:isAssociatedWith |
Kaiming_He's_work
|
gptkbp:isAttendedBy |
Industry applications
|
gptkbp:isChallengedBy |
Deep learning models
|
gptkbp:isCitedIn |
Numerous academic papers
|
gptkbp:isDiscussedIn |
Machine learning conferences
|
gptkbp:isEvaluatedBy |
Various benchmarks
|
gptkbp:isExploredIn |
PhD_theses
|
gptkbp:isInfluencedBy |
AI development
|
gptkbp:isLocatedIn |
gptkb:PyTorch
TensorFlow |
gptkbp:isPartOf |
Computer_Vision_research
Deep_Learning_literature |
gptkbp:isPublishedIn |
IEEE
|
gptkbp:isRecognizedBy |
AI community
|
gptkbp:isRecognizedFor |
Innovative architecture
|
gptkbp:isSupportedBy |
Funding agencies
Large-scale datasets |
gptkbp:isTrainedIn |
Various datasets
|
gptkbp:isUsedIn |
Image classification tasks
Object detection tasks Semantic segmentation tasks |
gptkbp:isUtilizedIn |
Real-time applications
|
gptkbp:keyIssues |
Deep learning advancements
|
gptkbp:provides |
Theoretical insights
|
gptkbp:publishedIn |
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
|
gptkbp:relatedTo |
gptkb:Convolutional_Neural_Networks
Traditional deep networks |
gptkbp:supports |
Transfer learning
|
gptkbp:uses |
Skip connections
|
gptkbp:utilizes |
Batch normalization
|
gptkbp:year |
2016
|