Residual Network

GPTKB entity

Statements (68)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:bfsLayer 7
gptkbp:bfsParent gptkb:Cresnet_18.0
gptkb:Cresnet_19.0
gptkbp:applies_to gptkb:television_channel
gptkbp:based_on Skip Connections
gptkbp:benefits Very Deep Networks
gptkbp:competes_with gptkb:Dense_Net
gptkbp:composed_of Residual Blocks
gptkbp:developed_by gptkb:Kaiming_He
gptkbp:enhances Gradient Flow
gptkbp:has_achievements State-of-the-art Performance
gptkbp:has_variants gptkb:Res_Net-101
gptkb:Res_Net-152
gptkb:Res_Net-50
https://www.w3.org/2000/01/rdf-schema#label Residual Network
gptkbp:improves Training of Deep Networks
gptkbp:introduced gptkb:2015
gptkbp:is_adopted_by gptkb:Research_Institute
Autonomous Driving
Facial Recognition
Medical Imaging
Video Analysis
gptkbp:is_cited_in Numerous Research Papers
gptkbp:is_compared_to Traditional CN Ns
gptkbp:is_considered_as Deep Architecture
gptkbp:is_designed_to Facilitate Training
gptkbp:is_evaluated_by gptkb:CIFAR-10
gptkb:CIFAR-100
gptkb:Image_Net_Dataset
Loss Function
Top-1 Accuracy
Top-5 Accuracy
gptkbp:is_explored_in gptkb:software_framework
gptkb:Graph_Neural_Networks
gptkb:Neural_Architecture_Search
Unsupervised Learning
Adversarial Training
Generative Models
Multi-task Learning
Model Compression
Self-supervised Learning
Few-shot Learning
Zero-shot Learning
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
Convolutional Layers
Activation Functions
gptkbp:is_influenced_by Highway Networks
gptkbp:is_known_for Identity Mapping
Skip Connections
gptkbp:is_optimized_for gptkb:benchmark
gptkbp:is_part_of Deep Residual Learning Framework
gptkbp:is_popular_in gptkb:viewpoint
gptkbp:is_related_to gptkb:Deep_Learning
gptkbp:is_supported_by NVIDIAGP Us
TP Us
gptkbp:is_tested_for Various Datasets
gptkbp:is_used_for Object Detection
Semantic Segmentation
gptkbp:is_used_in gptkb:streaming_service
Feature Extraction
gptkbp:is_utilized_in Real-time Applications
gptkbp:performance Image Classification Tasks
gptkbp:reduces Vanishing Gradient Problem
gptkbp:training Stochastic Gradient Descent
gptkbp:used_in Image Classification
gptkbp:utilizes gptkb:Batch_Normalization