convolutional neural network
GPTKB entity
Statements (449)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:artificial_intelligence
gptkb:model gptkb:convolutional_neural_network concept theoretical computer science artificial intelligence technique generative model Artificial Intelligence Concept |
gptkbp:abbreviation |
gptkb:CNN
gptkb:GAN |
gptkbp:activatedBy |
gptkb:ReLU
gptkb:Sigmoid gptkb:Tanh linear sigmoid tanh softmax |
gptkbp:advantage |
energy efficiency
temporal information processing |
gptkbp:alsoKnownAs |
gptkb:SNN
|
gptkbp:alternativeName |
Artificial_Neural_Network
Artificial_Neural_Network_Architecture Artificial_neural_network Convolutional_Neural_Network Generative_Adversarial_Network Graph_Neural_Network Spiking_Neural_Network artificial_neural_network autoencoder convolutional_neural_network_architecture deep_learning_framework generative_adversarial_network neural_network neural_network_architecture neural_network_model variational_autoencoder |
gptkbp:application |
gptkb:Image_Segmentation
gptkb:robot autonomous vehicles computer vision natural language processing robotics time series analysis bioinformatics audio processing image generation recommendation systems data augmentation social network analysis face recognition chemoinformatics image-to-image translation object detection super-resolution text-to-image synthesis semantic segmentation Time Series Analysis Autonomous Vehicles Document Analysis Facial Recognition Object Detection Recommendation Systems knowledge graph completion traffic prediction |
gptkbp:appliesTo |
robotics
pattern recognition brain-machine interfaces sensory processing |
gptkbp:architecture |
latent space
decoder encoder |
gptkbp:basedOn |
gptkb:convolutional_neural_network
biological visual cortex variational Bayesian methods |
gptkbp:can_be_implemented_on |
neuromorphic hardware
|
gptkbp:can_be_simulated_with |
gptkb:SpiNNaker
BindsNET Brian Simulator NEST Simulator |
gptkbp:canBe |
gptkb:GCN
gptkb:Hopfield_Network gptkb:Neural_Turing_Machine gptkb:Self-Organizing_Map gptkb:LeNet gptkb:Multilayer_Perceptron gptkb:Radial_Basis_Function_Network gptkb:transformation gptkb:T5 gptkb:GraphSAGE gptkb:U-Net gptkb:Echo_State_Network gptkb:RetinaNet gptkb:SqueezeNet gptkb:convolutional_neural_network gptkb:BigGAN gptkb:StyleGAN gptkb:DenseNet gptkb:Faster_R-CNN gptkb:Mask_R-CNN gptkb:MobileNet gptkb:Recurrent_Neural_Network gptkb:ResNeXt gptkb:Neural_Architecture_Search gptkb:EfficientNet gptkb:Xception gptkb:CycleGAN gptkb:Pix2Pix gptkb:Boltzmann_Machine gptkb:Mixture_of_Experts gptkb:Swin_Transformer gptkb:AlexNet gptkb:Deep_Belief_Network gptkb:ChebNet gptkb:GAT gptkb:DeepLab gptkb:Perceiver gptkb:Perceiver_IO gptkb:ERNIE gptkb:BERT gptkb:ALBERT gptkb:DistilBERT gptkb:GPT gptkb:RoBERTa gptkb:Transformer-XL gptkb:Vision_Transformer gptkb:XLNet gptkb:YOLO gptkb:NASNet Boltzmann machine Feedforward Neural Network directed graphs undirected graphs dynamic graphs heterogeneous graphs attributed graphs PointNet Relational Graph Convolutional Network Liquid State Machine Attention Network Attention-based Neural Network Bidirectional Neural Network Capsule Network Ensemble Neural Network Extreme Learning Machine Few-Shot Learning Network Gated Recurrent Unit Network Hierarchical Neural Network Inception Network Long Short-Term Memory Network Memory-Augmented Neural Network Meta-Learning Network Modular Neural Network Multi-Task Learning Network Neural Module Network Neural Ordinary Differential Equation Neural Programmer-Interpreter PointNet++ Recursive Neural Network Residual Attention Network Residual Neural Network Shufflenet Siamese Neural Network VGG Network Wide Residual Network Zero-Shot Learning Network |
gptkbp:challenge |
scalability
hardware implementation training complexity lack of standardized frameworks |
gptkbp:citation |
high
|
gptkbp:component |
latent variable
probabilistic decoder probabilistic encoder reparameterization trick |
gptkbp:consistsOf |
artificial neurons
layers generator discriminator |
gptkbp:developedBy |
gptkb:Yann_LeCun
1940s |
gptkbp:distinctFrom |
traditional artificial neural networks
|
gptkbp:encodes_information_in |
spike rate
spike timing |
gptkbp:field |
gptkb:artificial_intelligence
gptkb:machine_learning deep learning graph theory |
gptkbp:firstPublished |
1989
|
gptkbp:hasActivationFunction |
gptkb:ReLU
sigmoid function tanh function softmax function |
gptkbp:hasComponent |
Convolutional Layer
Fully Connected Layer convolutional layer fully connected layer hidden layer input layer output layer pooling layer Activation Function Pooling Layer artificial neuron Hidden Layer Input Layer Output Layer |
gptkbp:hasConcept |
message passing
graph representation learning node embedding |
gptkbp:hasModel |
biological neural networks
|
gptkbp:hasProperty |
hierarchical feature learning
parameter efficiency spatial locality translation invariance |
gptkbp:hasType |
gptkb:convolutional_neural_network
gptkb:feedforward_neural_network gptkb:radial_basis_function_network recurrent neural network spiking neural network modular neural network |
https://www.w3.org/2000/01/rdf-schema#label |
convolutional neural network
|
gptkbp:implementedIn |
gptkb:Python
gptkb:TensorFlow gptkb:Spektral gptkb:MATLAB gptkb:Keras gptkb:Caffe gptkb:PyTorch_Geometric gptkb:Theano gptkb:PyTorch gptkb:Deep_Graph_Library |
gptkbp:input |
gptkb:illustrator
gptkb:text Audio continuous data discrete data Grid-like Data graph data |
gptkbp:inspiredBy |
biological neural network
|
gptkbp:introduced |
gptkb:Ian_Goodfellow
gptkb:Yann_LeCun gptkb:Diederik_P._Kingma gptkb:Max_Welling |
gptkbp:introducedIn |
1989
2013 2014 |
gptkbp:layer |
hidden layer
input layer output layer |
gptkbp:limitation |
computationally intensive
overfitting scalability training instability exploding gradient problem interpretability lack of interpretability requires large labeled datasets vanishing gradient problem over-smoothing requires large datasets expressivity |
gptkbp:lossFunction |
gptkb:KL_divergence
reconstruction loss binary cross-entropy |
gptkbp:mayInclude |
Weights
Activation Function Biases |
gptkbp:notableBuilding |
gptkb:LeNet
gptkb:Inception gptkb:GoogLeNet gptkb:ResNet gptkb:VGGNet gptkb:DenseNet gptkb:MobileNet gptkb:AlexNet |
gptkbp:notableExample |
gptkb:LeNet
gptkb:GoogLeNet gptkb:ResNet gptkb:VGGNet gptkb:AlexNet |
gptkbp:notablePublication |
gptkb:Auto-Encoding_Variational_Bayes
arXiv:1312.6114 |
gptkbp:notableVariant |
gptkb:DCGAN
gptkb:StyleGAN gptkb:Wasserstein_GAN gptkb:CycleGAN gptkb:Pix2Pix |
gptkbp:objective |
ELBO
evidence lower bound minimax game |
gptkbp:openSource |
gptkb:TensorFlow
gptkb:Keras gptkb:PyTorch |
gptkbp:optimizedFor |
backpropagation
stochastic gradient descent |
gptkbp:output |
gptkb:organization
|
gptkbp:parameter |
weights
learning rate activation function biases number of layers number of neurons |
gptkbp:platform |
gptkb:TensorFlow
gptkb:Keras gptkb:MXNet gptkb:CNTK gptkb:Caffe gptkb:Theano gptkb:PyTorch |
gptkbp:popularizedBy |
gptkb:Frank_Rosenblatt
|
gptkbp:property |
Hierarchical Feature Learning
Local Connectivity Parameter Sharing Translation Invariance |
gptkbp:proposedBy |
gptkb:Walter_Pitts
gptkb:Warren_McCulloch gptkb:Scarselli_et_al. 1943 2008 |
gptkbp:relatedTo |
gptkb:artificial_intelligence
gptkb:machine_learning gptkb:model gptkb:perceptron gptkb:GraphSAGE gptkb:convolutional_neural_network gptkb:feedforward_neural_network gptkb:transformer_(machine_learning_model) gptkb:Recurrent_Neural_Network gptkb:Hopfield_network gptkb:ChebNet gptkb:Graph_Convolutional_Network gptkb:Gated_Graph_Neural_Network gptkb:Graph_Attention_Network gptkb:Message_Passing_Neural_Network Boltzmann machine deep learning Bayesian inference recurrent neural network unsupervised learning Feedforward Neural Network Deep Learning probabilistic graphical model Transfer Learning biological plausibility multilayer perceptron self-organizing map |
gptkbp:researched_since |
late 1990s
|
gptkbp:SIM |
neuronal dynamics
|
gptkbp:studiedBy |
gptkb:Henry_Markram
gptkb:Steve_Furber gptkb:Wolfgang_Maass gptkb:Simon_Thorpe gptkb:Terry_Sejnowski computational neuroscience Eugene M. Izhikevich Giacomo Indiveri Kwabena Boahen Rodney Douglas Sander M. Bohte Shih-Chii Liu Tobi Delbruck Wulfram Gerstner Yulia Sandamirskaya |
gptkbp:supports |
supervised learning
semi-supervised learning unsupervised learning |
gptkbp:trainer |
gptkb:reinforcement_learning
backpropagation gradient descent supervised learning stochastic gradient descent unsupervised learning adversarial training Backpropagation Stochastic Gradient Descent |
gptkbp:type |
third-generation neural network
|
gptkbp:usedFor |
gptkb:dictionary
gptkb:Natural_Language_Processing gptkb:Speech_Recognition data compression natural language processing speech recognition function approximation image generation image recognition pattern recognition regression time series prediction dimensionality reduction unsupervised learning representation learning medical image analysis anomaly detection forecasting Video Analysis video analysis Image Recognition Medical Image Analysis data clustering generating new data graph classification link prediction node classification |
gptkbp:usedIn |
gptkb:Machine_Learning
gptkb:artificial_intelligence gptkb:fashion_designer gptkb:security autonomous vehicles computer vision data compression data privacy natural language processing robotics drug discovery speech synthesis medical imaging semi-supervised learning forensics Deep Learning anomaly detection style transfer video generation music generation image editing image inpainting domain adaptation data denoising image synthesis image colorization image deblurring 3D object generation face synthesis video prediction satellite image analysis deepfake generation fake media detection |
gptkbp:uses |
gptkb:Hodgkin-Huxley_model
feature maps local receptive fields weight sharing Izhikevich model leaky integrate-and-fire model spikes for information transmission |
gptkbp:uses_communication |
event-driven
|
gptkbp:uses_learning_rule |
gptkb:Hebbian_learning
Backpropagation Spike-Timing Dependent Plasticity |
gptkbp:bfsParent |
gptkb:network_protocol
|
gptkbp:bfsLayer |
4
|