Reinforcement Learning

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instanceOf machine learning paradigm
gptkbp:conference gptkb:AAAI
gptkb:ICLR
gptkb:ICML
gptkb:NeurIPS
gptkbp:fieldOfStudy gptkb:artificial_intelligence
gptkbp:firstPublished 1980s
gptkbp:focusesOn sequential decision making
learning from interaction
gptkbp:hasApplication autonomous vehicles
robotics
resource management
game playing
recommendation systems
gptkbp:hasConcept gptkb:action
gptkb:award
gptkb:explorer
gptkb:public_policy
gptkb:state_order
environment
value function
exploitation
agent
gptkbp:hasJournal gptkb:Journal_of_Machine_Learning_Research
gptkb:Machine_Learning_Journal
gptkb:Artificial_Intelligence_Journal
gptkbp:hasSubfield deep reinforcement learning
hierarchical reinforcement learning
inverse reinforcement learning
model-based reinforcement learning
model-free reinforcement learning
multi-agent reinforcement learning
https://www.w3.org/2000/01/rdf-schema#label Reinforcement Learning
gptkbp:notableBook gptkb:Reinforcement_Learning:_An_Introduction
gptkbp:notableContributor gptkb:Richard_S._Sutton
gptkb:Andrew_G._Barto
gptkbp:notableFor gptkb:Monte_Carlo_methods
gptkb:Actor-Critic
gptkb:Deep_Q-Network
gptkb:SARSA
gptkb:Q-learning
gptkb:Policy_Gradient
gptkb:Temporal_Difference_learning
gptkbp:relatedTo supervised learning
unsupervised learning
gptkbp:usedBy gptkb:DeepMind
gptkb:AlphaGo
gptkb:OpenAI_Five
gptkbp:uses Markov chain
reward signals
trial and error
gptkbp:bfsParent gptkb:NeurIPS_2013
gptkb:NeurIPS_2018
gptkb:Unity_Machine_Learning_Agents
gptkb:Neural_Networks
gptkb:Deep_Neural_Network
gptkbp:bfsLayer 6