VGGNet

GPTKB entity

Statements (62)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:achieved_top5_accuracy 89.8% on Image Net
gptkbp:architecture gptkb:Deep_Learning
gptkbp:coat_of_arms 16 or 19
gptkbp:developed_by gptkb:Visual_Geometry_Group
gptkbp:has_variants gptkb:VGG16
gptkb:VGG19
https://www.w3.org/2000/01/rdf-schema#label VGGNet
gptkbp:input_output 224x224
gptkbp:is_a_framework_for gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_based_on Convolutional layers
gptkbp:is_evaluated_by gptkb:CIFAR-10
gptkb:Pascal_VOC
gptkb:COCO
gptkb:Celeb_A_dataset
gptkb:CIFAR-100
LFW dataset
gptkbp:is_influenced_by gptkb:Le_Net
gptkb:Alex_Net
gptkbp:is_known_for High accuracy
Feature extraction
Depth of network
Simplicity of architecture
Use of small filters
gptkbp:is_popular_in gptkb:Computer_Vision
gptkbp:is_trained_in gptkb:Image_Net_dataset
Data augmentation
Stochastic gradient descent
Dropout regularization
gptkbp:is_used_in gptkb:virtual_reality
Natural language processing
Sentiment analysis
Speech recognition
Augmented reality
Image segmentation
Anomaly detection
Transfer learning
Autonomous driving
Facial recognition
Video analysis
Recommendation systems
Text recognition
Object detection
Gesture recognition
Style transfer
Medical image analysis
Scene understanding
Image super-resolution
Action recognition
gptkbp:notable_for Image classification tasks
gptkbp:performance 71.3% on Image Net
gptkbp:predecessor gptkb:Alex_Net
gptkbp:successor gptkb:Res_Net
gptkbp:uses Re LU activation function
gptkbp:uses_normalization Batch normalization
gptkbp:uses_pooling Max pooling
gptkbp:year_established gptkb:2014
gptkbp:bfsParent gptkb:Image_Net
gptkb:neural_networks
gptkbp:bfsLayer 4