Ray Project

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf gptkb:software
distributed computing framework
gptkbp:category gptkb:software
cloud computing
distributed systems
machine learning infrastructure
gptkbp:citation Moritz, P., Nishihara, R., et al. (2018). Ray: A Distributed Framework for Emerging AI Applications. OSDI 2018.
gptkbp:component gptkb:Ray_Core
gptkb:Ray_Data
gptkb:Ray_RLlib
gptkb:Ray_Serve
gptkb:Ray_Train
gptkb:Ray_Tune
Ray AIR
gptkbp:contributedTo community contributors
gptkbp:developedBy gptkb:Anyscale
gptkbp:documentation https://docs.ray.io/en/latest/
gptkbp:feature resource management
scalability
fault tolerance
task parallelism
integration with cloud platforms
actor-based programming model
gptkbp:firstReleased 2017
https://www.w3.org/2000/01/rdf-schema#label Ray Project
gptkbp:integration gptkb:AWS
gptkb:LightGBM
gptkb:TensorFlow
gptkb:XGBoost
gptkb:Azure
gptkb:GCP
gptkb:Kubernetes
gptkb:PyTorch
gptkb:scikit-learn
gptkbp:license gptkb:Apache_License_2.0
gptkbp:logo https://raw.githubusercontent.com/ray-project/ray/master/doc/source/images/ray_logo.png
gptkbp:maintainedBy gptkb:Anyscale
gptkbp:programmingLanguage gptkb:Java
gptkb:Python
gptkbp:repository https://github.com/ray-project/ray
gptkbp:supports gptkb:machine_learning
gptkb:reinforcement_learning
hyperparameter tuning
distributed training
gptkbp:usedFor scalable Python and machine learning applications
gptkbp:website https://www.ray.io/
gptkbp:bfsParent gptkb:RLlib
gptkb:KubeRay
gptkbp:bfsLayer 7