reinforcement learning

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instanceOf machine learning paradigm
gptkbp:application autonomous vehicles
robotics
resource management
game playing
recommendation systems
gptkbp:challenge credit assignment problem
exploration-exploitation tradeoff
sample efficiency
stability and convergence
gptkbp:conference gptkb:AAAI
gptkb:ICML
gptkb:NeurIPS
gptkb:IJCAI
gptkbp:field gptkb:artificial_intelligence
gptkbp:firstMajorBookPublished 1998
gptkbp:focusesOn learning by trial and error
gptkbp:goal maximize cumulative reward
gptkbp:hasSubfield deep reinforcement learning
hierarchical reinforcement learning
inverse reinforcement learning
model-based reinforcement learning
model-free reinforcement learning
multi-agent reinforcement learning
https://www.w3.org/2000/01/rdf-schema#label reinforcement learning
gptkbp:involves gptkb:public_policy
environment
states
actions
reward function
value function
agent
gptkbp:notableBook gptkb:Reinforcement_Learning:_An_Introduction
gptkbp:notableContributor gptkb:Andrew_Barto
gptkb:Richard_S._Sutton
gptkbp:notableFor gptkb:Monte_Carlo_methods
gptkb:Actor-Critic
gptkb:SARSA
gptkb:Deep_Q-Network_(DQN)
gptkbp:relatedTo gptkb:Q-learning
Markov chain
dynamic programming
policy gradient methods
temporal difference learning
gptkbp:usedBy gptkb:DeepMind
gptkb:AlphaGo
gptkb:OpenAI_Five
gptkbp:uses rewards and punishments
gptkbp:bfsParent gptkb:artificial_intelligence
gptkb:machine_learning
gptkb:Theory_of_Machine_Learning
gptkbp:bfsLayer 4