Ray RLlib

GPTKB entity

Statements (70)
Predicate Object
gptkbp:instanceOf open-source library
gptkbp:developedBy gptkb:Anyscale
gptkbp:documentation https://docs.ray.io/en/latest/rllib/index.html
gptkbp:feature hyperparameter tuning
fault tolerance
visualization tools
policy evaluation
cloud support
policy gradient methods
self-play
custom callbacks
custom environments
model serving
model-free RL
multi-agent support
curriculum learning
imitation learning
custom models
custom metrics
custom preprocessors
multi-GPU support
checkpointing
policy optimization
production-ready
actor-critic methods
model-based RL
multi-node support
batch RL
high scalability
custom policies
customizable algorithms
custom loss functions
Q-learning methods
algorithm registry
asynchronous training
custom exploration
custom optimizers
custom reward functions
distributed rollout workers
exploration strategies
flexible APIs
metrics logging
multi-agent communication
offline dataset ingestion
parameter server architecture
population-based training
synchronous training
gptkbp:firstReleased 2018
gptkbp:focusesOn gptkb:reinforcement_learning
https://www.w3.org/2000/01/rdf-schema#label Ray RLlib
gptkbp:integratesWith gptkb:OpenAI_Gym
gptkb:TensorFlow
gptkb:PyTorch
gptkb:PettingZoo
gptkb:RLlib_Tune
gptkbp:latestReleaseVersion Ray 2.9 (as of 2024)
gptkbp:license gptkb:Apache_License_2.0
gptkbp:partOf right
gptkbp:programmingLanguage gptkb:Python
gptkbp:repository https://github.com/ray-project/ray
gptkbp:supports deep reinforcement learning
multi-agent reinforcement learning
distributed training
offline reinforcement learning
gptkbp:usedBy gptkb:researchers
industry practitioners
gptkbp:usedFor scalable RL workloads
gptkbp:bfsParent gptkb:Proximal_Policy_Optimization_(PPO)
gptkb:Ray_(distributed_computing)
gptkbp:bfsLayer 7