Ray Tune

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:software
gptkbp:api for customization
gptkbp:can_be_used_with gptkb:scikit-learn
gptkbp:community_support gptkb:theorem
gptkbp:developed_by Ray Labs
gptkbp:has available in documentation
gptkbp:has_documentation available online
gptkbp:has_feature Bayesian optimization
grid search
random search
population-based training
https://www.w3.org/2000/01/rdf-schema#label Ray Tune
gptkbp:integrates_with gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_available_on gptkb:archive
gptkbp:is_compatible_with gptkb:Keras
gptkb:Jupyter_notebooks
gptkbp:is_designed_for scalable machine learning
gptkbp:is_effective_against parameter search
gptkbp:is_influential_in machine learning community
gptkbp:is_integrated_with gptkb:Weights_&_Biases
M Lflow
gptkbp:is_maintained_by gptkb:Community_Center
gptkbp:is_open_source gptkb:theorem
gptkbp:is_optimized_for cloud environments
machine learning models
deep learning models
gptkbp:is_part_of gptkb:Ray_ecosystem
AI/ ML tools
Ray framework
gptkbp:is_recognized_by tech industry
gptkbp:is_scalable large datasets
gptkbp:is_supported_by gptkb:Ray_community
gptkbp:is_used_by data scientists
machine learning engineers
gptkbp:is_used_for hyperparameter tuning
hyperparameter optimization
gptkbp:is_used_in gptkb:academic_research
industry projects
gptkbp:offers multi-agent optimization
gptkbp:passes_through clusters
local machines
gptkbp:performance available for evaluation
gptkbp:provides automated search algorithms
gptkbp:released_in gptkb:2019
gptkbp:suitable_for research purposes
production environments
gptkbp:supports distributed training
multi-node training
gptkbp:user_experience gptkb:theorem
gptkbp:written_in gptkb:Library
gptkbp:bfsParent gptkb:Ray_project
gptkbp:bfsLayer 5