Ray Serve

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:can_be_used_with gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:constructed_in Ray core
gptkbp:developed_by gptkb:Ray_Team
gptkb:Library
gptkbp:enables Real-time inference
gptkbp:has_feature Dynamic scaling
Health checks
Traffic splitting
Custom routing
https://www.w3.org/2000/01/rdf-schema#label Ray Serve
gptkbp:integrates_with gptkb:computer
gptkbp:is_available_on gptkb:2020
gptkb:archive
gptkbp:is_compatible_with gptkb:lake
gptkb:fortification
Various ML frameworks
gptkbp:is_designed_for Machine learning applications
gptkbp:is_documented_in Ray documentation
gptkbp:is_integrated_with gptkb:g_RPC
RESTAP Is
gptkbp:is_known_for gptkb:benchmark
Flexibility
Ease of use
gptkbp:is_open_source gptkb:theorem
gptkbp:is_optimized_for Low latency
Resource efficiency
High throughput
gptkbp:is_part_of gptkb:Ray_project
gptkb:Ray_ecosystem
Machine learning workflows
AI model serving solutions
gptkbp:is_scalable Cloud environments
On-premise environments
gptkbp:is_supported_by gptkb:Ray_community
Community contributions
gptkbp:is_used_by Data scientists
Machine learning engineers
gptkbp:is_used_for Model monitoring
A/ B testing
Model serving at scale
gptkbp:is_used_in Production environments
gptkbp:language gptkb:Library
gptkbp:offers Load balancing
Monitoring tools
gptkbp:provides Model deployment
API for model serving
Versioning for models
gptkbp:purpose Serving machine learning models
gptkbp:scales Thousands of requests
gptkbp:suitable_for Real-time applications
Batch inference
gptkbp:supports Scalability
Batch processing
Multi-model serving
gptkbp:uses gptkb:Actor
gptkbp:bfsParent gptkb:Ray_project
gptkbp:bfsLayer 5