gptkbp:instanceOf
|
Machine Learning Model
|
gptkbp:application
|
gptkb:Speech_Synthesis
Data Augmentation
Text Generation
Anomaly Detection
Drug Discovery
Image Generation
Molecule Generation
|
gptkbp:canBe
|
Unsupervised
Supervised
Semi-supervised
|
gptkbp:challenge
|
Evaluation Metrics
Mode Collapse
Training Instability
|
gptkbp:example
|
gptkb:Variational_Autoencoder
gptkb:convolutional_neural_network
Autoregressive Model
Normalizing Flow
|
gptkbp:field
|
gptkb:Machine_Learning
gptkb:artificial_intelligence
Deep Learning
|
https://www.w3.org/2000/01/rdf-schema#label
|
Deep Generative Model
|
gptkbp:learns
|
Data Distribution
|
gptkbp:notableContributor
|
gptkb:Ian_Goodfellow
gptkb:Yoshua_Bengio
gptkb:Diederik_P._Kingma
gptkb:Max_Welling
|
gptkbp:notablePublication
|
gptkb:Generative_Adversarial_Nets_(2014)
Auto-Encoding Variational Bayes (2013)
Pixel Recurrent Neural Networks (2016)
Real NVP (2016)
|
gptkbp:output
|
Sample
Probability Distribution
Synthetic Data
|
gptkbp:popularizedBy
|
2010s
|
gptkbp:purpose
|
gptkb:Unsupervised_Learning
Density Estimation
Data Generation
|
gptkbp:relatedTo
|
gptkb:Representation_Learning
gptkb:Latent_Variable_Model
Bayesian Inference
Probabilistic Model
|
gptkbp:trainer
|
gptkb:Reinforcement_Learning
gptkb:Variational_Inference
Maximum Likelihood Estimation
Adversarial Training
|
gptkbp:uses
|
gptkb:Neural_Network
gptkb:Deep_Neural_Network
Stochastic Process
Optimization Algorithm
|
gptkbp:bfsParent
|
gptkb:Deep_Boltzmann_Machines
|
gptkbp:bfsLayer
|
8
|