Variational Autoencoder

GPTKB entity

Statements (43)
Predicate Object
gptkbp:instanceOf gptkb:model
generative model
gptkbp:application data compression
image generation
semi-supervised learning
representation learning
anomaly detection
gptkbp:basedOn gptkb:convolutional_neural_network
variational Bayesian methods
gptkbp:citation Kingma, D.P. and Welling, M. (2013). Auto-Encoding Variational Bayes.
gptkbp:field gptkb:artificial_intelligence
gptkb:machine_learning
computer vision
gptkbp:hasConcept latent space
probabilistic decoder
probabilistic encoder
reparameterization trick
https://www.w3.org/2000/01/rdf-schema#label Variational Autoencoder
gptkbp:input data sample
gptkbp:introduced gptkb:Diederik_P._Kingma
gptkb:Max_Welling
gptkbp:introducedIn 2013
gptkbp:lossFunction gptkb:Kullback-Leibler_divergence
reconstruction loss
gptkbp:objective evidence lower bound
gptkbp:openSource gptkb:TensorFlow
gptkb:Keras
gptkb:PyTorch
gptkbp:output gptkb:organization
gptkbp:relatedTo gptkb:convolutional_neural_network
Boltzmann machine
Bayesian inference
gptkbp:trainer backpropagation
stochastic gradient descent
gptkbp:uses latent variable model
decoder network
encoder network
gptkbp:bfsParent gptkb:Auto-Encoding_Variational_Bayes
gptkb:Diederik_P._Kingma
gptkb:Diederik_Kingma
gptkb:NeurIPS_2015
gptkb:Stable_Diffusion_model
gptkbp:bfsLayer 6