Deep Boltzmann Machines

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:applies_to gptkb:Deep_Learning
gptkbp:can Latent Variables
Complex Distributions
Hierarchical Representations
gptkbp:can_be_combined_with gptkb:neural_networks
gptkb:Recurrent_Neural_Networks
gptkbp:can_be_used_for Dimensionality Reduction
Feature Learning
gptkbp:can_create New Data Samples
gptkbp:composed_of Hidden Layers
Visible Layer
gptkbp:developed_by gptkb:Geoffrey_R._Hinton
gptkbp:has_applications_in gptkb:Natural_Language_Processing
Image Recognition
Recommendation Systems
gptkbp:has_limitations Scalability Issues
Training Complexity
https://www.w3.org/2000/01/rdf-schema#label Deep Boltzmann Machines
gptkbp:is_compared_to gptkb:Support_Vector_Machines
gptkb:Traditional_Neural_Networks
Deep Neural Networks
gptkbp:is_evaluated_by Log-Likelihood
Reconstruction Error
Benchmark Datasets
Synthetic Datasets
gptkbp:is_explored_in Conferences
Research Papers
Thesis Works
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Python
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:statistical_mechanics
Information Theory
gptkbp:is_part_of gptkb:Artificial_Intelligence
gptkb:neural_networks
Generative Models
gptkbp:is_related_to gptkb:Deep_Belief_Networks
gptkb:Variational_Autoencoders
gptkbp:is_trained_in Contrastive Divergence
gptkbp:is_used_in gptkb:speeches
Anomaly Detection
Game AI
gptkbp:related_to Restricted Boltzmann Machines
gptkbp:requires Large Datasets
gptkbp:training Stochastic Gradient Descent
Batch Training
Mini-Batch Training
gptkbp:used_for Unsupervised Learning
gptkbp:bfsParent gptkb:Boltzmann_Machines
gptkbp:bfsLayer 4