YOLOv2

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:cosmic_ray_detector
gptkbp:based_on gptkb:YOLO_(You_Only_Look_Once)
gptkbp:can_detect 80 object classes
gptkbp:developed_by gptkb:Joseph_Redmon
gptkbp:has real-time performance
open-source code
gptkbp:has_achieved high accuracy
https://www.w3.org/2000/01/rdf-schema#label YOLOv2
gptkbp:improves gptkb:YOLOv4
gptkb:YOLOv5
gptkb:YOLOv3-tiny
real-time object detection
speed of detection
gptkbp:input_output 416x416 pixels
bounding boxes and class probabilities
gptkbp:is_a_framework_for gptkb:Darknet
gptkbp:is_compatible_with gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_evaluated_by gptkb:PASCAL_VOC
gptkb:Cityscapes_dataset
gptkb:KITTI_dataset
gptkbp:is_popular_in computer vision community
gptkbp:is_trained_in gptkb:COCO_dataset
gptkbp:is_used_for image classification
image segmentation
object tracking
gptkbp:is_used_in gptkb:sports_team
gptkb:medical_imaging
gptkb:vehicles
gptkb:drones
gptkb:robotics
augmented reality
environmental monitoring
industrial automation
quality control
gesture recognition
security systems
surveillance systems
video analysis
facial recognition
traffic monitoring
retail analytics
wildlife monitoring
smart cameras
gptkbp:release_year gptkb:2016
gptkbp:reliability gptkb:YOLOv3
gptkb:Retina_Net
gptkb:Mask_R-CNN
gptkbp:speed gptkb:Faster_R-CNN
gptkb:R-CNN
gptkb:Fast_R-CNN
gptkbp:successor gptkb:YOLOv3
gptkbp:supports multiple object detection
gptkbp:uses convolutional neural networks
batch normalization
anchor boxes
gptkbp:written_in C and CUDA
gptkbp:bfsParent gptkb:YOLO
gptkbp:bfsLayer 5