Statements (57)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:Data
|
gptkbp:analysis |
visualization tools available
|
gptkbp:annotation_tools |
Label Me, VGG Image Annotator
|
gptkbp:application |
computer vision, machine learning
|
gptkbp:available_formats |
images, annotations
|
gptkbp:benchmark_competitions |
CVPR, ECCV
|
gptkbp:categories |
road, vehicles, pedestrians
|
gptkbp:class |
gptkb:30
|
gptkbp:collaborator |
various universities and research institutions
|
gptkbp:collection |
driving through cities
|
gptkbp:contains |
street scenes
|
gptkbp:contribution |
open-source projects
|
gptkbp:created_by |
gptkb:Max_Planck_Institute_for_Informatics
|
gptkbp:data_annotation |
manual and semi-automated
|
gptkbp:data_challenges_addressed |
real-world application of AI
|
gptkbp:data_ethics |
considerations for data use
|
gptkbp:data_labeling |
multi-class labeling
|
gptkbp:data_preprocessing |
normalization, augmentation
|
gptkbp:data_size |
over 25 GB
|
gptkbp:data_type |
JPEG images
benchmark dataset supports various ML frameworks |
gptkbp:dataset_citations |
cited in numerous papers
|
gptkbp:dataset_collaborations |
partnerships with tech companies
|
gptkbp:dataset_features |
high-resolution images
|
gptkbp:dataset_goals |
improve scene understanding
|
gptkbp:dataset_impact |
advancing urban scene understanding
|
gptkbp:dataset_limitations |
limited to urban scenes
|
gptkbp:dataset_popularity |
widely used in research
|
gptkbp:dataset_updates |
periodic updates
|
gptkbp:evaluates |
mean Intersection over Union (m Io U)
|
gptkbp:focus |
urban environments
|
gptkbp:focus_area |
German cities
|
gptkbp:has_artwork |
5000
|
https://www.w3.org/2000/01/rdf-schema#label |
Cityscapes dataset
|
gptkbp:image |
camera footage
|
gptkbp:image_diversity |
various weather conditions
|
gptkbp:is_divided_into |
train, val, test
|
gptkbp:is_documented_in |
gptkb:JSON
pixel-level annotations |
gptkbp:license |
gptkb:Creative_Commons_Attribution_4.0_International_License
|
gptkbp:primary_use |
autonomous driving research
|
gptkbp:product_quality |
high-quality annotations
|
gptkbp:provides_information_on |
encourages collaboration
free for research purposes image segmentation challenges |
gptkbp:related_datasets |
gptkb:ADE20_K
|
gptkbp:release_year |
gptkb:2016
|
gptkbp:resolution |
2048x1024
|
gptkbp:training_models |
Deep Lab, FCN
|
gptkbp:trends |
growing interest in urban datasets
|
gptkbp:used_for |
semantic segmentation
|
gptkbp:user_base |
researchers, developers, students
|
gptkbp:website |
https://www.cityscapes-dataset.com
|
gptkbp:bfsParent |
gptkb:Mask_R-CNN
gptkb:Seg_Net |
gptkbp:bfsLayer |
5
|