gptkbp:instance_of
|
gptkb:cosmic_ray_detector
|
gptkbp:applies_to
|
gptkb:neural_networks
computer vision
image classification
instance segmentation
object localization
|
gptkbp:benefits
|
high accuracy
high speed
computationally intensive
requires large datasets
|
gptkbp:can_detect
|
Objects in Images
|
gptkbp:developed_by
|
gptkb:Ross_B._Girshick
gptkb:Shaoqing_Ren
gptkb:Kaiming_He
Jian Sun
|
gptkbp:has
|
High Accuracy
End-to-End Training
|
gptkbp:has_achieved
|
State-of-the-art Performance
state-of-the-art performance
|
gptkbp:has_applications_in
|
gptkb:sports_team
gptkb:medical_imaging
gptkb:vehicles
gptkb:robotics
augmented reality
surveillance systems
facial recognition
retail analytics
drone monitoring
|
gptkbp:has_feature
|
high accuracy
real-time processing
end-to-end training
|
gptkbp:has_limitations
|
computationally intensive
requires large datasets
|
gptkbp:has_variants
|
gptkb:Faster_R-CNN_with_FPN
Faster R-CNN with attention mechanisms
|
https://www.w3.org/2000/01/rdf-schema#label
|
Faster R-CNN
|
gptkbp:improves
|
gptkb:R-CNN
gptkb:Fast_R-CNN
Object Detection Speed
|
gptkbp:is_adopted_by
|
gptkb:Industry
Academia
|
gptkbp:is_based_on
|
gptkb:R-CNN
gptkb:Fast_R-CNN
deep learning
Convolutional Neural Networks (CNNs)
|
gptkbp:is_cited_in
|
over 10,000 papers
|
gptkbp:is_compared_to
|
gptkb:SSD
gptkb:YOLO
|
gptkbp:is_enhanced_by
|
gptkb:stage_adaptation
gptkb:Hyperparameter_Tuning
Data Augmentation
|
gptkbp:is_evaluated_by
|
gptkb:Cityscapes_Dataset
gptkb:KITTI_Dataset
gptkb:Open_Images_Dataset
gptkb:PASCAL_VOC
gptkb:MS_COCO
gptkb:COCO_dataset
|
gptkbp:is_implemented_in
|
gptkb:Tensor_Flow
gptkb:Py_Torch
|
gptkbp:is_influenced_by
|
gptkb:Deep_Residual_Networks
Region-based CNNs
|
gptkbp:is_influential_in
|
computer vision applications
deep learning research
|
gptkbp:is_known_for
|
Flexibility
Scalability
Feature Reusability
High Recall Rate
Real-Time Detection
|
gptkbp:is_optimized_for
|
GPU Processing
|
gptkbp:is_part_of
|
gptkb:AI_technology
Machine Learning Applications
computer vision
Deep Learning Frameworks
deep learning frameworks
Computer Vision Research
Faster R-CNN family
|
gptkbp:is_popular_in
|
gptkb:academic_research
industry applications
|
gptkbp:is_related_to
|
gptkb:SSD
gptkb:YOLO
gptkb:Mask_R-CNN
|
gptkbp:is_supported_by
|
gptkb:Open_CV
gptkb:NVIDIA_GPUs
gptkb:TPUs
gptkb:NVIDIA
|
gptkbp:is_trained_in
|
gptkb:Open_Images
gptkb:Image_Net
|
gptkbp:is_used_for
|
image segmentation
real-time object detection
|
gptkbp:is_used_in
|
gptkb:Augmented_Reality
gptkb:Autonomous_Vehicles
gptkb:Computer_Vision
gptkb:medical_imaging
gptkb:vehicles
gptkb:robotics
Facial Recognition
Image Analysis
Medical Imaging
Surveillance Systems
image classification
facial recognition
video surveillance
instance segmentation
object localization
|
gptkbp:performance
|
Precision
Recall
image analysis
Frames Per Second (FPS)
object detection tasks
image segmentation tasks
Inference time
mean Average Precision (m AP)
video analysis tasks
|
gptkbp:published_in
|
gptkb:2015
|
gptkbp:reduces
|
False Positive Rate
|
gptkbp:release_year
|
gptkb:2015
|
gptkbp:requires
|
Large Datasets
|
gptkbp:supports
|
Multi-Class Detection
|
gptkbp:uses
|
gptkb:Region_Proposal_Network_(RPN)
Region Proposal Networks
Convolutional Neural Networks (CNNs)
|
gptkbp:bfsParent
|
gptkb:YOLO
gptkb:Mask_R-CNN
|
gptkbp:bfsLayer
|
5
|