Statements (102)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:software_framework
|
gptkbp:bfsLayer |
3
|
gptkbp:bfsParent |
gptkb:television_channel
gptkb:Alumni_Association |
gptkbp:adapted_into |
different domains
|
gptkbp:adds |
pixel-level segmentation
|
gptkbp:applies_to |
gptkb:Photographer
autonomous driving video analysis Ro I Align |
gptkbp:based_on |
gptkb:Faster_R-CNN
|
gptkbp:competes_with |
gptkb:CEO
gptkb:YOLO |
gptkbp:developed_by |
gptkb:Facebook_AI_Research
|
gptkbp:enhances |
image segmentation accuracy
|
gptkbp:has |
open-source implementations
backbone networks |
gptkbp:has_achievements |
state-of-the-art results
|
gptkbp:has_expansion |
gptkb:Faster_R-CNN
|
gptkbp:has_programs |
gptkb:robot
augmented reality image editing |
https://www.w3.org/2000/01/rdf-schema#label |
Mask R-CNN
|
gptkbp:improves |
gptkb:Faster_R-CNN
pixel-level segmentation |
gptkbp:input_output |
bounding boxes
segmentation masks |
gptkbp:introduced |
gptkb:2017
|
gptkbp:is_adopted_by |
research institutions
industry applications tech companies academic research. |
gptkbp:is_compatible_with |
transfer learning
|
gptkbp:is_considered_as |
a standard in segmentation tasks
|
gptkbp:is_discussed_in |
online forums
|
gptkbp:is_documented_in |
research papers
academic papers Git Hub repositories |
gptkbp:is_evaluated_by |
gptkb:Cityscapes_dataset
gptkb:KITTI_dataset competitions cross-validation benchmark datasets m AP (mean Average Precision) Io U (Intersection over Union) Io U metric m AP metric |
gptkbp:is_implemented_in |
gptkb:Graphics_Processing_Unit
gptkb:Py_Torch |
gptkbp:is_influenced_by |
gptkb:R-CNN
gptkb:Alumni_Association gptkb:Seg_Net |
gptkbp:is_influential_in |
deep learning community
|
gptkbp:is_known_for |
flexibility
high accuracy robustness flexibility in tasks |
gptkbp:is_often_used_in |
computer vision
|
gptkbp:is_optimized_for |
gptkb:military_unit
accuracy data augmentation transfer learning |
gptkbp:is_part_of |
AI research projects
computer vision frameworks computer vision toolkit |
gptkbp:is_popular_in |
gptkb:academic_research
industry applications computer vision community |
gptkbp:is_related_to |
image classification
feature extraction object recognition semantic segmentation |
gptkbp:is_scalable |
large images
|
gptkbp:is_supported_by |
community contributions
|
gptkbp:is_used_for |
object detection
video analysis image segmentation scene understanding face detection image captioning instance segmentation |
gptkbp:is_used_in |
gptkb:Photographer
gptkb:robot gptkb:engine augmented reality surveillance systems object tracking image segmentation competitions |
gptkbp:provides |
pixel-wise predictions
|
gptkbp:recognizes |
multiple classes
|
gptkbp:requires |
convolutional neural networks
GPU for training large datasets for training |
gptkbp:suitable_for |
real-time applications
|
gptkbp:supports |
multi-task learning
|
gptkbp:training |
gptkb:COCO_dataset
gptkb:Pascal_VOC_dataset university courses backpropagation stochastic gradient descent |
gptkbp:uses |
Fully Convolutional Networks
|
gptkbp:utilizes |
Region Proposal Network
|