gptkbp:instanceOf
|
gptkb:algorithm
|
gptkbp:abbreviation
|
gptkb:UKF
|
gptkbp:advantage
|
better accuracy for nonlinear systems
no need for explicit Jacobian calculation
|
gptkbp:alternativeTo
|
gptkb:Extended_Kalman_filter
gptkb:Particle_filter
|
gptkbp:application
|
gptkb:navigation
aerospace
autonomous vehicles
robotics
sensor fusion
target tracking
|
gptkbp:basedOn
|
unscented transform
|
gptkbp:category
|
recursive filter
Bayesian filter
state observer
|
gptkbp:developedBy
|
gptkb:Jeffrey_K._Uhlmann
gptkb:Simon_J._Julier
|
gptkbp:field
|
gptkb:estimation_theory
gptkb:signal_processing
control theory
|
https://www.w3.org/2000/01/rdf-schema#label
|
Unscented Kalman filter
|
gptkbp:input
|
Gaussian noise
nonlinear measurement model
nonlinear process model
|
gptkbp:introducedIn
|
1997
|
gptkbp:limitation
|
assumes Gaussian noise
computationally more expensive than EKF
not optimal for highly non-Gaussian noise
|
gptkbp:output
|
error covariance
state estimate
|
gptkbp:publishedIn
|
gptkb:Proceedings_of_the_1997_American_Control_Conference
|
gptkbp:relatedTo
|
gptkb:Extended_Kalman_filter
gptkb:Kalman_filter
|
gptkbp:usedFor
|
nonlinear state estimation
|
gptkbp:uses
|
sigma points
unscented transform
|
gptkbp:bfsParent
|
gptkb:Kalman_filter
|
gptkbp:bfsLayer
|
4
|