Unscented Kalman filter

GPTKB entity

Statements (39)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
gptkbp:abbreviation gptkb:UKF
gptkbp:advantage better accuracy for nonlinear systems
no need for explicit Jacobian calculation
gptkbp:alternativeTo gptkb:Extended_Kalman_filter
gptkb:Particle_filter
gptkbp:application gptkb:navigation
aerospace
autonomous vehicles
robotics
sensor fusion
target tracking
gptkbp:basedOn unscented transform
gptkbp:category recursive filter
Bayesian filter
state observer
gptkbp:developedBy gptkb:Jeffrey_K._Uhlmann
gptkb:Simon_J._Julier
gptkbp:field gptkb:estimation_theory
gptkb:signal_processing
control theory
https://www.w3.org/2000/01/rdf-schema#label Unscented Kalman filter
gptkbp:input Gaussian noise
nonlinear measurement model
nonlinear process model
gptkbp:introducedIn 1997
gptkbp:limitation assumes Gaussian noise
computationally more expensive than EKF
not optimal for highly non-Gaussian noise
gptkbp:output error covariance
state estimate
gptkbp:publishedIn gptkb:Proceedings_of_the_1997_American_Control_Conference
gptkbp:relatedTo gptkb:Extended_Kalman_filter
gptkb:Kalman_filter
gptkbp:usedFor nonlinear state estimation
gptkbp:uses sigma points
unscented transform
gptkbp:bfsParent gptkb:Kalman_filter
gptkbp:bfsLayer 4