gptkbp:instanceOf
|
gptkb:algorithm
|
gptkbp:advantage
|
Handles nonlinear, non-Gaussian systems
|
gptkbp:alsoKnownAs
|
gptkb:Sequential_Monte_Carlo_method
|
gptkbp:basedOn
|
gptkb:Monte_Carlo_methods
|
gptkbp:citation
|
Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993)
|
gptkbp:firstDescribed
|
gptkb:Gordon,_Salmond,_and_Smith
1993
|
gptkbp:hasConcept
|
Importance sampling
Particles represent hypotheses
Resampling
Weighting
|
https://www.w3.org/2000/01/rdf-schema#label
|
Particle filter
|
gptkbp:introducedIn
|
1990s
|
gptkbp:limitation
|
Computationally expensive
Particle degeneracy
Sample impoverishment
|
gptkbp:mathematicalFoundation
|
gptkb:Probability_theory
Bayesian statistics
Stochastic processes
|
gptkbp:notableFor
|
gptkb:SLAM_(Simultaneous_Localization_and_Mapping)
Financial time series analysis
Object tracking
Robot localization
Speech recognition
Weather prediction
|
gptkbp:notableVariant
|
gptkb:Bootstrap_filter
gptkb:Rao-Blackwellized_particle_filter
gptkb:Unscented_particle_filter
Auxiliary particle filter
|
gptkbp:relatedTo
|
gptkb:Kalman_filter
gptkb:Hidden_Markov_model
Markov chain
Bayesian filter
|
gptkbp:requires
|
Observation model
Random number generation
Transition model
|
gptkbp:step
|
Prediction
Resampling
Update
Weight normalization
|
gptkbp:usedFor
|
Bayesian inference
Nonlinear filtering
State estimation
|
gptkbp:usedIn
|
gptkb:robot
gptkb:signal_processing
Computer vision
Navigation
|
gptkbp:bfsParent
|
gptkb:Kalman_filter
|
gptkbp:bfsLayer
|
4
|