Swin-L

GPTKB entity

Statements (63)
Predicate Object
gptkbp:instance_of gptkb:Transformers
gptkbp:application Image Classification
Object Detection
Semantic Segmentation
gptkbp:architecture gptkb:Hierarchical_Transformer
gptkbp:developed_by gptkb:Microsoft_Research
gptkbp:evaluates m AP
Io U
gptkbp:feature gptkb:stage_adaptation
gptkb:Few-Shot_Learning
gptkb:Zero-Shot_Learning
gptkb:AI_technology
Scalability
Data Augmentation
Robustness
Knowledge Distillation
Domain Adaptation
Attention Mechanism
Ensemble Learning
Model Interpretability
Fine-tuning
Flexible Architecture
Data Efficiency
Model Compression
Efficient Computation
Multi-Task Learning
Self-Supervised Learning
Residual Connections
Contrastive Learning
Layer Normalization
Cross-Scale Attention
Dynamic Windowing
Generative Learning
Global Context Attention
Hierarchical Feature Maps
Multi-Scale Representation
Patch Embedding
https://www.w3.org/2000/01/rdf-schema#label Swin-L
gptkbp:input_output 224x224
gptkbp:license MIT License
gptkbp:orbital_period over 200 million
gptkbp:performance gptkb:PASCAL_VOC
gptkb:ADE20_K
gptkb:COCO
Cityscapes
Top-1 Accuracy
Top-5 Accuracy
LVIS
gptkbp:predecessor gptkb:Swin-T
gptkbp:provides_information_on gptkb:Image_Net
gptkbp:related_to gptkb:Computer_Vision
gptkb:neural_networks
gptkb:Deep_Learning
gptkb:Swin_Transformer
gptkb:Vision_Transformers
gptkbp:repository gptkb:Git_Hub
gptkbp:successor gptkb:Swin-V
gptkbp:training Supervised Learning
gptkbp:training_programs gptkb:Py_Torch
gptkbp:uses Shifted Windowing
gptkbp:year_established gptkb:2021
gptkbp:bfsParent gptkb:Swin_Transformer
gptkbp:bfsLayer 5