gptkbp:instance_of
|
gptkb:machine_learning
|
gptkbp:application
|
Natural language processing
Recommendation systems
Image classification
|
gptkbp:benefits
|
Reduces the need for labeled data.
|
gptkbp:challenges
|
Domain shift
Semantic gap
|
gptkbp:defines
|
A machine learning paradigm that aims to recognize objects or classes that were not seen during training.
|
gptkbp:evaluates
|
Accuracy
F1 Score
Precision
Recall
|
https://www.w3.org/2000/01/rdf-schema#label
|
Zero-Shot Learning
|
gptkbp:key_paper
|
nan
|
gptkbp:notable_algorithm
|
gptkb:Variational_Autoencoders_(VAEs)
Deep learning models
Generative Adversarial Networks (GANs)
Attribute-based classifiers
Semantic output codes
|
gptkbp:philosophy
|
Transfer learning
Attribute-based learning
|
gptkbp:related_concept
|
gptkb:stage_adaptation
gptkb:Few-Shot_Learning
|
gptkbp:research_areas
|
gptkb:Computer_Vision
gptkb:Artificial_Intelligence
gptkb:machine_learning
|
gptkbp:technique
|
Generative models
Embedding methods
|
gptkbp:bfsParent
|
gptkb:Swin-L
gptkb:Kaiming_He
gptkb:Language_Models_are_Few-Shot_Learners
gptkb:Vision_Transformers
gptkb:Dense_Net-121
|
gptkbp:bfsLayer
|
6
|