Swin Transformer

GPTKB entity

Statements (70)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkb:Transformers_character
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Transformers_character
gptkbp:applies_to image classification
object detection
image segmentation
semantic segmentation
gptkbp:architectural_style gptkb:architect
gptkbp:based_on gptkb:Transformers_character
shifted windows
gptkbp:competes_with gptkb:Vision_Transformers
gptkbp:developed_by gptkb:Microsoft_Research
gptkbp:has high accuracy
multiple variants
gptkbp:has_achievements state-of-the-art results
state-of-the-art performance
gptkbp:has_variants gptkb:Swin-B
gptkb:Swin-L
gptkb:Swin-T
Swin-S
https://www.w3.org/2000/01/rdf-schema#label Swin Transformer
gptkbp:improves computational efficiency
image classification performance
gptkbp:influences subsequent models
gptkbp:introduced gptkb:2021
gptkbp:is open-source
scalable
based on a hierarchical structure
designed for dense prediction tasks
flexible for different tasks
part of the family of vision transformers
widely adopted in research
gptkbp:is_adopted_by gptkb:academic_research
industry applications
gptkbp:is_cited_in numerous research papers
gptkbp:is_considered_as a leading model in vision tasks
gptkbp:is_documented_in ar Xiv preprint
gptkbp:is_evaluated_by gptkb:COCO_dataset
gptkb:Image_Net_dataset
real-world scenarios
AD E20 K dataset
benchmark competitions
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_known_for scalability
efficient computation
flexible windowing mechanism
gptkbp:is_optimized_for large-scale datasets
gptkbp:is_part_of CVPR 2021 conference
Vision Transformer family
gptkbp:is_recognized_by AI research community
gptkbp:is_related_to gptkb:television_channel
gptkb:Vision_Transformers
Attention Mechanisms
gptkbp:is_supported_by community contributions
open-source implementations
gptkbp:is_used_for computer vision tasks
gptkbp:is_used_in transfer learning
self-supervised learning
gptkbp:performance image classification tasks
object detection tasks
image segmentation tasks
gptkbp:supports multi-scale feature extraction
hierarchical feature representation
gptkbp:training gptkb:COCO_2017
gptkb:Image_Net-1_K
AD E20 K dataset
gptkbp:utilizes shifted windows
local and global attention mechanisms