Few-Shot Learning

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:application Natural language processing
Speech recognition
Image classification
gptkbp:benefits Reduced training time
Generalization to new tasks
Limited interpretability
Lower data requirements
Requires careful tuning
gptkbp:challenges Overfitting
Data scarcity
gptkbp:defines A type of machine learning where the model is trained on a small number of examples.
gptkbp:evaluates Accuracy
Precision
Recall
Cross-validation
F1 score
Holdout validation
Leave-one-out validation
gptkbp:field gptkb:neural_networks
gptkb:Deep_Learning
Statistical Learning
gptkbp:future_prospects Expansion to more complex tasks
Improvement in model architectures
Integration with reinforcement learning
gptkbp:goal Enhance model robustness
Facilitate learning from limited data
Improve learning efficiency
https://www.w3.org/2000/01/rdf-schema#label Few-Shot Learning
gptkbp:is_a_tool_for gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_compared_to Zero-shot learning
One-shot learning
Traditional machine learning
gptkbp:philosophy gptkb:Matching_networks
gptkb:Siamese_networks
Prototypical networks
gptkbp:provides_information_on gptkb:CUB-200-2011
gptkb:Mini_Image_Net
gptkb:Omniglot
Fungi dataset
gptkbp:research_areas gptkb:Computer_Vision
gptkb:Artificial_Intelligence
gptkb:robotics
gptkbp:technique Transfer learning
Meta-learning
gptkbp:theory Bayesian inference
Graphical models
Variational inference
gptkbp:bfsParent gptkb:GPT-3
gptkbp:bfsLayer 5