Swin-B

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:Model
gptkbp:applies_to Image Classification
Object Detection
Semantic Segmentation
gptkbp:architectural_style gptkb:Transformers_character
gptkbp:collaborated_with Academic Institutions
Industry Partners
Open Source Communities
Research Labs
gptkbp:developed_by gptkb:Microsoft_Research
gptkbp:has_achievements State-of-the-art performance
gptkbp:has_method 50 million
https://www.w3.org/2000/01/rdf-schema#label Swin-B
gptkbp:input_output 224x224
gptkbp:introduced gptkb:2021
gptkbp:is_available_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_discussed_in gptkb:Workshops
gptkb:conference
Conferences
Webinars
gptkbp:is_documented_in Research Papers
Technical Reports
Git Hub Repositories
Documentation Websites
gptkbp:is_evaluated_by gptkb:Cityscapes_Dataset
gptkb:COCO_Dataset
Top-1 Accuracy
Top-5 Accuracy
AD E20 K Dataset
m Io U
gptkbp:is_influenced_by gptkb:television_channel
gptkb:Vision_Transformers
gptkbp:is_known_for Efficiency
Flexibility
Scalability
gptkbp:is_optimized_for Vision Tasks
gptkbp:is_part_of Computer Vision Community
gptkbp:is_related_to gptkb:Swin-L
gptkb:Swin-T
gptkbp:is_supported_by Community Contributions
Open Source Projects
gptkbp:is_used_in Research Papers
Industry Applications
gptkbp:part_of Swin Transformer family
gptkbp:performance gptkb:Efficient_Net
gptkb:Res_Net
gptkb:Swin_Transformer
gptkb:Vision_Transformers
Vision Models
gptkbp:supports Multi-scale Representation
gptkbp:training gptkb:Image_Net
Supervised Learning
Self-supervised Learning
gptkbp:uses Attention Mechanism
Layer Normalization
Hierarchical Feature Maps
Shifted Windowing Scheme
gptkbp:bfsParent gptkb:Swin_Transformer
gptkbp:bfsLayer 5