Efficient Net

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:consists_of multiple variants
gptkbp:developed_by gptkb:Google_AI
gptkbp:has_achieved state-of-the-art accuracy on Image Net
gptkbp:has_variants gptkb:Efficient_Net_B0
gptkb:Efficient_Net_B1
gptkb:Efficient_Net_B2
gptkb:Efficient_Net_B3
gptkb:Efficient_Net_B4
gptkb:Efficient_Net_B5
gptkb:Efficient_Net_B6
gptkb:Efficient_Net_B7
https://www.w3.org/2000/01/rdf-schema#label Efficient Net
gptkbp:improves model efficiency
gptkbp:introduced_in gptkb:2019
gptkbp:is_available_in Tensor Flow and Py Torch
gptkbp:is_based_on Mobile Net architecture
gptkbp:is_cited_in research papers
gptkbp:is_compared_to gptkb:Inception
gptkb:VGG
gptkb:Dense_Net
gptkb:Res_Net
gptkbp:is_evaluated_by gptkb:CIFAR-10
gptkb:CIFAR-100
Kaggle competitions
Oxford Pets
Image Net validation set
Flowers 102
gptkbp:is_known_for scalability
flexibility in architecture design
high accuracy with fewer parameters
gptkbp:is_optimized_for resource efficiency
gptkbp:is_part_of transfer learning models
AI model zoo
gptkbp:is_popular_in computer vision community
gptkbp:is_supported_by gptkb:NVIDIA_GPUs
gptkb:TPUs
gptkbp:is_trained_in large datasets
gptkbp:is_used_for feature extraction
fine-tuning
gptkbp:is_used_in gptkb:mobile_applications
real-time applications
edge computing
cloud-based services
image classification tasks
object detection tasks
medical image analysis
semantic segmentation tasks
video classification tasks
gptkbp:outperforms previous models on Image Net
gptkbp:uses compound scaling method
gptkbp:bfsParent gptkb:Transformers
gptkbp:bfsLayer 4