Statements (59)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:television_channel
|
gptkbp:adapted_into |
3 D Image Segmentation
Multi-class Segmentation Multi-modal Segmentation Real-time Segmentation |
gptkbp:applies_to |
Biomedical Image Analysis
|
gptkbp:architectural_style |
Encoder-Decoder
|
gptkbp:based_on |
Fully Convolutional Networks
|
gptkbp:can_be_extended_by |
gptkb:3_DU-Net
gptkb:Attention_U-Net gptkb:Nested_U-Net Res U Net |
gptkbp:consists_of |
Contracting Path
Expansive Path |
gptkbp:developed_by |
gptkb:Olaf_Ronneberger
|
gptkbp:has |
Symmetric Architecture
|
gptkbp:has_achievements |
State-of-the-art Results
|
https://www.w3.org/2000/01/rdf-schema#label |
Standard U-Net
|
gptkbp:improves |
Segmentation Accuracy
|
gptkbp:introduced |
gptkb:2015
|
gptkbp:is_characterized_by |
High Performance
|
gptkbp:is_designed_for |
Image Segmentation
|
gptkbp:is_documented_in |
Research Articles
Technical Reports Online Tutorials Git Hub Repositories |
gptkbp:is_evaluated_by |
gptkb:MICCAI_Challenge
Cross-validation Test Datasets Intersection over Union (Io U) Dice Coefficient ISIC Challenge |
gptkbp:is_implemented_in |
gptkb:Graphics_Processing_Unit
gptkb:Py_Torch |
gptkbp:is_influenced_by |
gptkb:U-Net++
gptkb:Deep_Lab gptkb:Seg_Net |
gptkbp:is_often_used_in |
Medical Imaging
|
gptkbp:is_popular_in |
Deep Learning Community
|
gptkbp:is_supported_by |
Community Contributions
Open-source Libraries |
gptkbp:is_used_for |
Cell Segmentation
Organ Segmentation Tumor Segmentation Satellite Image Segmentation |
gptkbp:is_used_in |
Research Papers
Industrial Applications Medical Applications Agricultural Applications |
gptkbp:requires |
Large Datasets
|
gptkbp:training |
Backpropagation
Stochastic Gradient Descent |
gptkbp:uses |
Skip Connections
|
gptkbp:utilizes |
Convolutional Layers
Pooling Layers Up-sampling Layers |
gptkbp:bfsParent |
gptkb:Attention_U-Net
gptkb:Nested_U-Net |
gptkbp:bfsLayer |
4
|