3 DU-Net

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:applies_to 3 D volumetric data
gptkbp:based_on gptkb:Alumni_Association
gptkbp:can_be tumors
organs
gptkbp:developed_by gptkb:Ozan_Oktay
gptkbp:has_variants gptkb:V-Net
gptkb:Attention_U-Net
https://www.w3.org/2000/01/rdf-schema#label 3 DU-Net
gptkbp:improves segmentation accuracy
gptkbp:input_output segmentation masks
gptkbp:introduced gptkb:2018
gptkbp:is_adopted_by research institutions
healthcare companies
gptkbp:is_challenged_by data scarcity
computational cost
training time
gptkbp:is_compared_to gptkb:2_DU-Net
Fully Convolutional Networks
gptkbp:is_designed_for medical image segmentation
gptkbp:is_documented_in academic papers
technical reports
gptkbp:is_enhanced_by hyperparameter tuning
data augmentation
transfer learning
gptkbp:is_evaluated_by clinical trials
benchmark competitions
3 DCT scans
3 DMRI scans
Dice coefficient
Hausdorff distance
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:Dense_Net
gptkb:Res_Net
gptkbp:is_integrated_with clinical workflows
other AI models
gptkbp:is_optimized_for 3 D data processing
gptkbp:is_part_of deep learning frameworks
gptkbp:is_popular_in medical imaging community
gptkbp:is_promoted_by workshops
AI conferences
gptkbp:is_scalable larger datasets
gptkbp:is_supported_by community forums
online tutorials
gptkbp:is_used_for feature extraction
image-to-image translation
gptkbp:is_used_in oncology
pathology
radiology
gptkbp:requires GPU for training
gptkbp:security_features missing data
noisy data
gptkbp:training labeled datasets
gptkbp:uses convolutional layers
skip connections
gptkbp:utilizes upsampling
downsampling
gptkbp:bfsParent gptkb:Alumni_Association
gptkbp:bfsLayer 3