U-Net++

GPTKB entity

Statements (56)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:application Medical Image Segmentation
gptkbp:architectural_style Encoder-Decoder
gptkbp:developed_by Zhou et al.
gptkbp:enhances Context Aggregation
Feature Propagation
gptkbp:features Deep supervision
Nested skip pathways
gptkbp:has_achievements Higher Accuracy
Better Segmentation Quality
gptkbp:has_variants U-Net++ with Attention
U-Net++ with Dense Connections
U-Net++ with Multi-Scale Inputs
U-Net++ with Residual Connections
https://www.w3.org/2000/01/rdf-schema#label U-Net++
gptkbp:improves gptkb:Alumni_Association
gptkbp:input_output Segmentation Maps
2 D Images
gptkbp:is_cited_in Dissertations
Theses
Numerous Research Papers
Technical Reports
gptkbp:is_compared_to gptkb:Alumni_Association
gptkb:Seg_Net
FCN
gptkbp:is_evaluated_by BRATS Dataset
DRIVE Dataset
ISIC Dataset
LIDC-IDRI Dataset
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_optimized_for High-Resolution Images
Small Datasets
gptkbp:is_part_of Deep Learning Frameworks
gptkbp:is_popular_in Academic Conferences
Research Publications
Medical Imaging Community
gptkbp:is_related_to gptkb:viewpoint
gptkb:Artificial_Intelligence
Image Processing
gptkbp:is_supported_by gptkb:document
Community Contributions
Open Source Libraries
Online Tutorials
gptkbp:is_used_in Brain Tumor Segmentation
Cardiac Segmentation
Liver Segmentation
Retinal Image Segmentation
gptkbp:losses Dice Loss
Binary Cross-Entropy Loss
gptkbp:published_year gptkb:2018
gptkbp:uses Convolutional Layers
Pooling Layers
Upsampling Layers
gptkbp:bfsParent gptkb:Standard_U-Net
gptkbp:bfsLayer 5