Nested U-Net

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:application Medical Image Segmentation
gptkbp:architectural_style gptkb:Alumni_Association
gptkbp:benefits Robustness to noise
Better localization
Improved segmentation accuracy
gptkbp:contribution Reduced overfitting
Enhanced gradient flow
Improved feature representation
gptkbp:developed_by Zhou et al.
gptkbp:features Attention mechanisms
Residual connections
Adaptive feature fusion
Deep supervision
Hierarchical feature learning
Multi-scale feature extraction
Nested architecture
Nested skip pathways
Skip pathways at multiple levels
gptkbp:field_of_study gptkb:viewpoint
gptkb:Deep_Learning
Medical Imaging
gptkbp:game_components Decoder
Encoder
Skip connections
https://www.w3.org/2000/01/rdf-schema#label Nested U-Net
gptkbp:impact Widely cited in literature
High impact in medical imaging research
gptkbp:improves gptkb:Standard_U-Net
gptkbp:input_output Medical images
Segmentation maps
Variable input size
gptkbp:is_a_tool_for gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_compared_to gptkb:Attention_U-Net
gptkb:Seg_Net
FCN
gptkbp:is_evaluated_by Specificity
Sensitivity
Pixel accuracy
gptkbp:losses Cross-entropy loss
Dice loss
gptkbp:performance Jaccard Index
Dice Coefficient
gptkbp:provides_information_on gptkb:ISIC_2017
gptkbp:published_year gptkb:2018
gptkbp:resolution Variable output size
gptkbp:training Data augmentation
Transfer learning
Fine-tuning
End-to-end training
Large annotated datasets
gptkbp:use_case Cell segmentation
Lesion segmentation
Organ segmentation
Tumor segmentation
Vascular segmentation
gptkbp:bfsParent gptkb:Alumni_Association
gptkbp:bfsLayer 3