Residual Networks

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Atrous_Convolution
gptkb:Res_Ne_Xt
gptkb:Dense_Net-264
gptkbp:applies_to Object Detection
Image Segmentation
Video Analysis
gptkbp:developed_by gptkb:Kaiming_He
gptkbp:has_achievements State-of-the-art Performance
gptkbp:has_variants gptkb:Res_Net-101
gptkb:Res_Net-152
gptkb:Res_Net-50
https://www.w3.org/2000/01/rdf-schema#label Residual Networks
gptkbp:improves Training of Deep Networks
gptkbp:introduced gptkb:2015
gptkbp:is_evaluated_by gptkb:Image_Net
gptkb:CIFAR-10
gptkb:COCO_Dataset
F1 Score
Mean Average Precision
Top-1 Accuracy
Top-5 Accuracy
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:Dense_Net
Highway Networks
gptkbp:is_known_for gptkb:Deep_Residual_Learning
Scalability
High Accuracy
Layer-wise Learning Rate
Mitigating Vanishing Gradient Problem
Residual Learning Framework
gptkbp:is_part_of gptkb:Artificial_Intelligence
gptkb:software_framework
gptkb:Deep_Learning
Research in AI
Research in ML
gptkbp:is_popular_in gptkb:viewpoint
Deep Learning Competitions
gptkbp:is_related_to gptkb:television_channel
gptkb:Batch_Normalization
gptkb:Neural_Architecture_Search
Dropout Regularization
Transfer Learning Techniques
gptkbp:is_used_for Feature Extraction
Fine-tuning Models
gptkbp:is_used_in gptkb:streaming_service
gptkb:Autonomous_Vehicles
gptkb:software
gptkb:software_framework
gptkb:studio
Facial Recognition
Generative Models
Medical Image Analysis
gptkbp:training gptkb:Adam_Optimizer
Backpropagation
Stochastic Gradient Descent
gptkbp:used_in Image Classification
gptkbp:uses Skip Connections