Dense Net-264

GPTKB entity

Statements (61)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:applies_to Image Classification
gptkbp:architectural_style gptkb:Deep_Learning
gptkbp:coat_of_arms 264
gptkbp:developed_by Gao Huang
gptkbp:has Feature Maps
Growth Rate
gptkbp:has_achievements High Accuracy
https://www.w3.org/2000/01/rdf-schema#label Dense Net-264
gptkbp:is_adopted_by gptkb:film_production_company
gptkb:Research_Institute
gptkbp:is_characterized_by Compression Factor
Dense Blocks
Transition Layers
gptkbp:is_compared_to gptkb:Res_Net
gptkbp:is_evaluated_by gptkb:Pascal_VOC
gptkb:SVHN
gptkb:Celeb_A_Dataset
gptkb:Fashion_MNIST
gptkb:MNIST
gptkb:COCO_Dataset
Top-1 Accuracy
Top-5 Accuracy
LFW Dataset
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:Residual_Networks
VGG Net
gptkbp:is_known_for Scalability
Robustness
High Performance
Gradient Flow
Parameter Efficiency
Efficient Parameter Usage
gptkbp:is_optimized_for GPU Training
gptkbp:is_part_of gptkb:viewpoint
gptkbp:is_related_to gptkb:streaming_service
gptkbp:is_supported_by gptkb:DJ
gptkb:Google_Cloud
gptkb:AWS
gptkbp:is_used_for Feature Extraction
Fine-tuning
gptkbp:is_used_in gptkb:musician
gptkb:Autonomous_Vehicles
gptkb:software
gptkb:robot
Object Detection
Facial Recognition
Medical Imaging
Semantic Segmentation
gptkbp:performance gptkb:Image_Net_Challenge
gptkbp:supports Multi-Task Learning
gptkbp:training gptkb:Image_Net
gptkb:CIFAR-10
gptkbp:uses gptkb:Batch_Normalization
gptkb:Dropout
Dense Connectivity
Re LU Activation Function
gptkbp:year_created gptkb:2017
gptkbp:bfsParent gptkb:Dense_Net
gptkbp:bfsLayer 4