gptkbp:instance_of
|
gptkb:television_channel
|
gptkbp:bfsLayer
|
4
|
gptkbp:bfsParent
|
gptkb:Res_Net
|
gptkbp:applies_to
|
Image Classification
|
gptkbp:architectural_style
|
gptkb:Deep_Learning
|
gptkbp:coat_of_arms
|
50
|
gptkbp:connects
|
gptkb:theorem
|
gptkbp:developed_by
|
gptkb:Microsoft_Research
|
gptkbp:engine
|
gptkb:Autonomous_Vehicles
Facial Recognition
Medical Imaging
Agricultural Monitoring
Retail Analytics
|
gptkbp:established
|
Re LU
|
https://www.w3.org/2000/01/rdf-schema#label
|
Res Net-50
|
gptkbp:input_output
|
224x224
|
gptkbp:introduced
|
gptkb:2015
|
gptkbp:is_analyzed_in
|
gptkb:Neural_Architecture_Search
Adversarial Attacks
Transfer Learning Techniques
|
gptkbp:is_evaluated_by
|
gptkb:CIFAR-10
gptkb:SVHN
gptkb:CIFAR-100
|
gptkbp:is_implemented_in
|
gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
|
gptkbp:is_known_for
|
gptkb:Deep_Residual_Learning
High Accuracy
Efficient Training
|
gptkbp:is_open_source
|
gptkb:theorem
|
gptkbp:is_part_of
|
gptkb:Keras_Applications
gptkb:ONNX_Model_Zoo
gptkb:Res_Net_Family
Open CVDNN Module
|
gptkbp:is_popular_in
|
gptkb:viewpoint
|
gptkbp:is_used_for
|
Object Detection
Image Segmentation
|
gptkbp:is_used_in
|
gptkb:streaming_service
|
gptkbp:localization
|
gptkb:theorem
|
gptkbp:performance
|
gptkb:Image_Net_Challenge
Feature Extraction
Data Augmentation Techniques
Real-time Image Processing
Model Compression Techniques
Visual Recognition Tasks
Ensemble Learning Techniques
Generative Adversarial Networks (GA Ns)
Contrastive Learning Techniques
Deep Learning Competitions
Domain Adaptation Techniques
Few-shot Learning Techniques
Fine-tuning Models
Hyperparameter Optimization Techniques
Model Quantization Techniques
Multi-task Learning Techniques
Neural Network Pruning Techniques
Self-supervised Learning Techniques
Semi-supervised Learning Techniques
Zero-shot Learning Techniques
|
gptkbp:predecessor
|
gptkb:Res_Net-34
|
gptkbp:resulted_in
|
Top-5 accuracy of 92.3% on Image Net
|
gptkbp:successor
|
gptkb:Res_Net-101
|
gptkbp:training
|
gptkb:Image_Net_Dataset
|
gptkbp:uses
|
Average Pooling
Residual Learning
|