Res Net Variants

GPTKB entity

Statements (61)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:based_on Residual Learning
gptkbp:competes_with gptkb:Dense_Net
gptkb:VGGNet
gptkbp:developed_by gptkb:Kaiming_He
gptkbp:has gptkb:Batch_Normalization
Residual Blocks
Multiple Depths
gptkbp:has_achieved State-of-the-art Performance
https://www.w3.org/2000/01/rdf-schema#label Res Net Variants
gptkbp:improves Training Speed
gptkbp:includes gptkb:Res_Net-101
gptkb:Res_Net-152
gptkb:Res_Net-50
gptkbp:influenced Subsequent Architectures
gptkbp:introduced_in gptkb:2015
gptkbp:is gptkb:test_subjects
gptkb:Open_Source
Highly Scalable
Modular Design
Widely Used
Flexible Architecture
Deep Learning Architecture
Used in Robotics
Used in Augmented Reality
Used in Virtual Reality
Used in Mobile Applications
Used in Medical Imaging
Used in E-commerce
Highly Efficient
Used in Autonomous Vehicles
Used in Facial Recognition
Used in Video Analysis
Benchmark Model
End-to-End Trainable
Feature Extractor
Framework for Computer Vision
Image Processing Tool
Popular in Academia
Popular in Industry
Robust to Overfitting
Standard in Competitions
Used in Content Moderation
Used in Industry Applications
Used in Research Papers
Used in Retail Analytics
Used in Social Media Analysis
Used in Sports Analytics
Used in Surveillance Systems
Widely Implemented
gptkbp:is_applied_in Object Detection
Semantic Segmentation
gptkbp:is_evaluated_by gptkb:Image_Net_Dataset
gptkbp:is_optimized_for GPU Training
gptkbp:is_trained_in Large Datasets
gptkbp:reduces Vanishing Gradient Problem
gptkbp:supports gptkb:stage_adaptation
gptkbp:used_for Image Classification
gptkbp:utilizes Skip Connections
gptkbp:bfsParent gptkb:Deep_Residual_Learning_for_Image_Recognition
gptkbp:bfsLayer 5