|
gptkbp:instanceOf
|
gptkb:Simultaneous_Localization_and_Mapping_algorithm
|
|
gptkbp:advantage
|
handles non-Gaussian noise
handles non-linearities
|
|
gptkbp:alsoKnownAs
|
Monte Carlo Localization SLAM
|
|
gptkbp:application
|
autonomous vehicles
robotics
|
|
gptkbp:category
|
gptkb:probabilistic_robotics
Bayesian filtering
|
|
gptkbp:citation
|
OpenSLAM.org
|
|
gptkbp:developedBy
|
early 2000s
|
|
gptkbp:input
|
sensor data
odometry
|
|
gptkbp:limitation
|
computationally expensive
particle depletion
|
|
gptkbp:notableContributor
|
gptkb:Sebastian_Thrun
gptkb:Dieter_Fox
gptkb:Wolfram_Burgard
|
|
gptkbp:output
|
map of environment
robot pose estimate
|
|
gptkbp:referencePaper
|
Probabilistic Robotics (Thrun, Burgard, Fox, 2005)
|
|
gptkbp:relatedTo
|
gptkb:FastSLAM
EKF SLAM
|
|
gptkbp:solvedBy
|
localization problem
mapping problem
|
|
gptkbp:step
|
prediction
resampling
update
|
|
gptkbp:usedIn
|
drones
mobile robots
autonomous underwater vehicles
|
|
gptkbp:uses
|
particle filter
|
|
gptkbp:bfsParent
|
gptkb:Extended_Kalman_Filter_Simultaneous_Localization_and_Mapping
|
|
gptkbp:bfsLayer
|
8
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
Particle Filter SLAM
|