Optimization for Machine Learning
GPTKB entity
Statements (51)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:academic
|
gptkbp:appliesTo |
training algorithms
|
gptkbp:challenge |
overfitting
underfitting vanishing gradients local minima saddle points exploding gradients |
gptkbp:goal |
improve generalization
maximize accuracy minimize loss function |
gptkbp:hasApplication |
autonomous vehicles
computer vision natural language processing robotics speech recognition diagnosis recommendation systems financial modeling |
gptkbp:hasMethod |
gptkb:Newton's_method
gptkb:Adam_optimizer gptkb:RMSprop gptkb:L-BFGS Bayesian optimization evolutionary algorithms coordinate descent batch optimization Adagrad Momentum optimization mini-batch optimization online optimization |
https://www.w3.org/2000/01/rdf-schema#label |
Optimization for Machine Learning
|
gptkbp:includes |
gradient descent
hyperparameter tuning stochastic gradient descent convex optimization non-convex optimization regularization techniques |
gptkbp:relatedTo |
gptkb:machine_learning
mathematical optimization |
gptkbp:studiedIn |
applied mathematics
computer science statistics |
gptkbp:usedIn |
gptkb:reinforcement_learning
deep learning neural networks linear regression logistic regression support vector machines |
gptkbp:bfsParent |
gptkb:NeurIPS_2013
|
gptkbp:bfsLayer |
6
|