Optimization for Machine Learning

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf gptkb:academic
gptkbp:appliesTo training algorithms
gptkbp:challenge overfitting
underfitting
vanishing gradients
local minima
saddle points
exploding gradients
gptkbp:goal improve generalization
maximize accuracy
minimize loss function
gptkbp:hasApplication autonomous vehicles
computer vision
natural language processing
robotics
speech recognition
diagnosis
recommendation systems
financial modeling
gptkbp:hasMethod gptkb:Newton's_method
gptkb:Adam_optimizer
gptkb:RMSprop
gptkb:L-BFGS
Bayesian optimization
evolutionary algorithms
coordinate descent
batch optimization
Adagrad
Momentum optimization
mini-batch optimization
online optimization
https://www.w3.org/2000/01/rdf-schema#label Optimization for Machine Learning
gptkbp:includes gradient descent
hyperparameter tuning
stochastic gradient descent
convex optimization
non-convex optimization
regularization techniques
gptkbp:relatedTo gptkb:machine_learning
mathematical optimization
gptkbp:studiedIn applied mathematics
computer science
statistics
gptkbp:usedIn gptkb:reinforcement_learning
deep learning
neural networks
linear regression
logistic regression
support vector machines
gptkbp:bfsParent gptkb:NeurIPS_2013
gptkbp:bfsLayer 6