Optimization for Machine Learning
GPTKB entity
Statements (51)
| Predicate | Object |
|---|---|
| gptkbp:instanceOf |
gptkb:academic
|
| gptkbp:appliesTo |
training algorithms
|
| gptkbp:challenge |
overfitting
underfitting vanishing gradients local minima saddle points exploding gradients |
| gptkbp:goal |
improve generalization
maximize accuracy minimize loss function |
| gptkbp:hasApplication |
gptkb:diagnosis
autonomous vehicles computer vision natural language processing robotics speech recognition recommendation systems financial modeling |
| gptkbp:hasMethod |
gptkb:Newton's_method
gptkb:Adam_optimizer gptkb:RMSprop gptkb:L-BFGS Bayesian optimization evolutionary algorithms coordinate descent batch optimization Adagrad Momentum optimization mini-batch optimization online optimization |
| gptkbp:includes |
gradient descent
hyperparameter tuning stochastic gradient descent convex optimization non-convex optimization regularization techniques |
| gptkbp:relatedTo |
gptkb:machine_learning
gptkb:mathematical_optimization |
| gptkbp:studiedIn |
applied mathematics
computer science statistics |
| gptkbp:usedIn |
gptkb:reinforcement_learning
deep learning neural networks linear regression logistic regression support vector machines |
| gptkbp:bfsParent |
gptkb:NeurIPS_2013
|
| gptkbp:bfsLayer |
7
|
| https://www.w3.org/2000/01/rdf-schema#label |
Optimization for Machine Learning
|