RMSprop

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf gptkb:physicist
gptkbp:adaptation learning rate
gptkbp:appliesTo neural networks
gptkbp:developedBy Geoff_Hinton
gptkbp:hasFeature epsilon
decay rate
https://www.w3.org/2000/01/rdf-schema#label RMSprop
gptkbp:improves stochastic gradient descent
gptkbp:isBasedOn adaptive learning rates
vanishing gradients
gptkbp:isEvaluatedBy complex models
non-stationary objectives
large neural networks
gptkbp:isInfluencedBy Adadelta
gptkbp:isLocatedIn gptkb:PyTorch
gptkb:Keras
TensorFlow
Caffe
MXNet
Theano
gptkbp:isNotableFor sparse data
gptkbp:isPartOf gptkb:Adam
SGD
backpropagation
gradient descent family
Nesterov momentum
gptkbp:isPopularIn computer vision
natural language processing
gptkbp:isRecognizedFor small datasets
simple tasks
convex optimization problems
non-convex optimization problems
shallow networks
linear_models
gptkbp:isSimilarTo gptkb:Adagrad
gptkbp:isSuitableFor large datasets
gptkbp:isUsedFor training deep learning models
dropout
gptkbp:isUsedIn GANs
reinforcement learning
speech recognition
unsupervised learning
image classification
transfer learning
time series forecasting
semi-supervised learning
gptkbp:isVisitedBy momentum
gptkbp:maintains a moving average
gptkbp:requires hyperparameters
gptkbp:usedIn machine learning
gptkbp:wasAffecting 2012