Adam optimizer

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:bfsLayer 3
gptkbp:bfsParent gptkb:microprocessor
gptkbp:adaptation gptkb:battle
gptkbp:based_on first and second moments of gradients
gptkbp:can_be_used_with momentum and RMS Prop
gptkbp:controls sparse gradients
gptkbp:developed_by gptkb:2014
gptkb:D._P_Kingma
gptkbp:has_method beta1
beta2
epsilon
learning rate
https://www.w3.org/2000/01/rdf-schema#label Adam optimizer
gptkbp:improves SGD
gptkbp:is_capable_of noisy gradients
gptkbp:is_compared_to initialization
other optimizers
gptkbp:is_considered_as state-of-the-art optimizer
gptkbp:is_documented_in research papers
online tutorials
technical blogs
gptkbp:is_effective_against non-stationary objectives
gptkbp:is_evaluated_by convergence speed
real-world applications
stability
robustness
empirical studies
benchmark tests
final accuracy
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_often_used_in computer vision
natural language processing
gptkbp:is_part_of deep learning frameworks
gptkbp:is_popular_in gptkb:microprocessor
gptkbp:is_related_to backpropagation
gradient descent
loss function
training process
gptkbp:is_used_for transfer learning
model training
hyperparameter optimization
feature learning
fine-tuning models
stochastic optimization
gptkbp:is_used_in gptkb:software_framework
deep learning
reinforcement learning
gptkbp:speed traditional SGD
gptkbp:suitable_for gptkb:Adagrad
gptkb:Adadelta
large datasets
online learning
very small datasets
RMS Prop
highly oscillatory functions
gptkbp:tuning hyperparameters
gptkbp:uses adaptive learning rates