Adam optimizer

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:can_be_combined_with momentum and RMSProp
gptkbp:can_be_used_for stochastic optimization
gptkbp:can_handle sparse gradients
gptkbp:developed_by gptkb:2014
gptkb:D._P_Kingma
gptkbp:has_function beta1
beta2
epsilon
learning rate
https://www.w3.org/2000/01/rdf-schema#label Adam optimizer
gptkbp:improves SGD
gptkbp:is_adaptive yes
gptkbp:is_based_on first and second moments of gradients
gptkbp:is_compared_to other optimizers
gptkbp:is_considered_as state-of-the-art optimizer
gptkbp:is_documented_in research papers
online tutorials
technical blogs
gptkbp:is_effective_against non-stationary objectives
gptkbp:is_evaluated_by convergence speed
real-world applications
stability
robustness
empirical studies
benchmark tests
final accuracy
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_less_sensitive_to initialization
gptkbp:is_often_used_in computer vision
natural language processing
gptkbp:is_part_of deep learning frameworks
gptkbp:is_popular_in gptkb:neural_networks
gptkbp:is_recommended_by gptkb:Adagrad
gptkb:Adadelta
RMSProp
gptkbp:is_related_to backpropagation
gradient descent
loss function
training process
gptkbp:is_robust_to noisy gradients
gptkbp:is_used_for transfer learning
model training
hyperparameter optimization
feature learning
fine-tuning models
gptkbp:is_used_in gptkb:machine_learning
deep learning
reinforcement learning
gptkbp:speed traditional SGD
gptkbp:suitable_for large datasets
online learning
very small datasets
highly oscillatory functions
gptkbp:tuning hyperparameters
gptkbp:uses adaptive learning rates
gptkbp:bfsParent gptkb:neural_networks
gptkbp:bfsLayer 4