Naive Bayes Classifier

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf gptkb:model
classifier
gptkbp:advantage fast training
simple implementation
works well with high-dimensional data
gptkbp:assumes feature independence
gptkbp:basedOn gptkb:Bayes'_theorem
gptkbp:category supervised learning
probabilistic classifier
gptkbp:commonIn information retrieval
natural language processing
diagnosis
gptkbp:featureType binary
continuous
categorical
https://www.w3.org/2000/01/rdf-schema#label Naive Bayes Classifier
gptkbp:implementedIn gptkb:Weka
gptkb:scikit-learn
R
gptkbp:input feature vector
gptkbp:introducedIn 1960s
gptkbp:limitation not suitable for correlated features
strong independence assumption
gptkbp:mathematicalFormula P(C|X) = P(X|C) * P(C) / P(X)
gptkbp:namedAfter gptkb:Thomas_Bayes
gptkbp:openSource gptkb:Weka
gptkb:scikit-learn
R
gptkbp:output class label
gptkbp:performanceMetric precision
F1 score
recall
accuracy
gptkbp:relatedTo gptkb:Support_Vector_Machine
Logistic Regression
Decision Tree
gptkbp:trainingDataRequired labeled data
gptkbp:usedFor spam filtering
sentiment analysis
text classification
document categorization
gptkbp:uses likelihood
posterior probability
prior probability
gptkbp:variant gptkb:Bernoulli_Naive_Bayes
gptkb:Gaussian_Naive_Bayes
gptkb:Multinomial_Naive_Bayes
gptkbp:bfsParent gptkb:Unigram_Language_Model
gptkbp:bfsLayer 8