Multinomial Naive Bayes

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:Biology
gptkbp:based_on Bayes' theorem
gptkbp:can_be_combined_with feature selection techniques
gptkbp:can_be_extended_by multiclass problems
gptkbp:can_be_used_for spam detection
gptkbp:can_handle multiple classes
gptkbp:has_implications_for features are conditionally independent
https://www.w3.org/2000/01/rdf-schema#label Multinomial Naive Bayes
gptkbp:input_output probabilities
gptkbp:is_a probabilistic classifier
gptkbp:is_applied_in categorical data
gptkbp:is_based_on word frequency
gptkbp:is_evaluated_by accuracy metrics
F1 score
ROC curve
confusion matrix
cross-validation
precision metrics
gptkbp:is_implemented_in gptkb:R
gptkb:scikit-learn
gptkbp:is_influenced_by prior probabilities
gptkbp:is_less_effective_when data is sparse
features are correlated
features are not independent
gptkbp:is_often_used_in gptkb:machine_learning
gptkb:Biology
data science
AI applications
gptkbp:is_popular_for text categorization
gptkbp:is_popular_in natural language processing
gptkbp:is_related_to data preprocessing
data mining
feature engineering
feature extraction
text mining
text analytics
gptkbp:is_used_in language detection
sentiment analysis
topic modeling
recommendation systems
search engine optimization
customer feedback analysis
social media analysis
email filtering
content categorization
news categorization
product review classification
user intent classification
gptkbp:requires discrete features
gptkbp:security overfitting
gptkbp:sensitivity class imbalance
gptkbp:size gptkb:neural_networks
gptkbp:speed gptkb:SVM
gptkbp:suitable_for continuous data
real-time predictions
gptkbp:training maximum likelihood estimation
gptkbp:used_for text classification
gptkbp:works_with large datasets
gptkbp:bfsParent gptkb:Naive_Bayes
gptkbp:bfsLayer 5