Bernoulli Naive Bayes

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:Biology
gptkbp:applies_to binary features
gptkbp:can_be_combined_with feature selection techniques
gptkbp:can_be_used_with bag-of-words model
gptkbp:can_handle missing data
gptkbp:has_function alpha
https://www.w3.org/2000/01/rdf-schema#label Bernoulli Naive Bayes
gptkbp:input_output class probabilities
gptkbp:is_applied_in gptkb:Biology
gptkbp:is_based_on Bayes' theorem
independence assumption
gptkbp:is_evaluated_by gptkb:historical_memory
F1 score
ROC curve
accuracy
cross-validation
precision
gptkbp:is_implemented_in gptkb:R
gptkb:scikit-learn
gptkbp:is_often_used_in natural language processing
gptkbp:is_part_of supervised learning
ensemble methods
gptkbp:is_popular_in data science
gptkbp:is_related_to gptkb:machine_learning
gptkbp:is_similar_to gptkb:Multinomial_Naive_Bayes
gptkbp:is_trained_in training dataset
gptkbp:is_used_for sentiment analysis
spam detection
text mining
gptkbp:is_used_in gptkb:recommendations
risk assessment
language detection
topic modeling
customer segmentation
fraud detection
image classification
recommendation systems
medical diagnosis
customer feedback analysis
ad targeting
text summarization
social media analysis
content recommendation
text classification
email filtering
market basket analysis
news categorization
user behavior prediction
gptkbp:requires feature extraction
gptkbp:security overfitting
gptkbp:sensitivity class imbalance
gptkbp:speed in training
gptkbp:suitable_for continuous data
high-dimensional data
gptkbp:training maximum likelihood estimation
gptkbp:uses gptkb:Bernoulli_distribution
gptkbp:bfsParent gptkb:Naive_Bayes
gptkbp:bfsLayer 5