Support Vector Machine

GPTKB entity

Statements (56)
Predicate Object
gptkbp:instanceOf gptkb:model
supervised learning method
gptkbp:abbreviation gptkb:SVM
gptkbp:advantage effective in high dimensional spaces
memory efficient
robust to overfitting (with proper regularization)
gptkbp:canUseKernel gptkb:algebra
linear
sigmoid
radial basis function
gptkbp:hasConcept hyperplane
kernel trick
support vectors
maximizing margin between classes
https://www.w3.org/2000/01/rdf-schema#label Support Vector Machine
gptkbp:implementedIn gptkb:TensorFlow
gptkb:LIBSVM
gptkb:Weka
gptkb:scikit-learn
R
gptkbp:introduced gptkb:Alexey_Chervonenkis
gptkb:Vladimir_Vapnik
gptkbp:introducedIn 1963
gptkbp:limitation difficult to interpret
not suitable for very large datasets
sensitive to feature scaling
gptkbp:mathematicalFoundation learning theory
convex optimization
gptkbp:parameter gamma
C (regularization parameter)
degree (for polynomial kernel)
kernel type
gptkbp:relatedTo gptkb:Lagrange_multipliers
binary classification
regularization
outlier detection
dual problem
quadratic programming
hard margin
multiclass classification
nonlinear classification
soft margin
structural risk minimization
one-class SVM
C-SVM
nu-SVM
gptkbp:usedFor gptkb:dictionary
regression
gptkbp:usedIn bioinformatics
image recognition
handwriting recognition
face detection
text classification
gptkbp:bfsParent gptkb:Text_Classification
gptkb:Supervised_learning
gptkbp:bfsLayer 6