NASNet-C

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:architecture gptkb:neural_networks
gptkbp:based_on gptkb:Neural_Architecture_Search
gptkbp:coat_of_arms Fully Connected Layer
Skip Connections
Residual Blocks
gptkbp:competes_with gptkb:Efficient_Net
gptkb:Dense_Net
gptkb:Res_Net
gptkbp:contains Convolutional Layers
Pooling Layers
Activation Functions
gptkbp:designed_for Automated Neural Architecture Search
gptkbp:developed_by gptkb:Google
gptkbp:has_achieved State-of-the-art performance
gptkbp:has_function Over 88 million parameters
https://www.w3.org/2000/01/rdf-schema#label NASNet-C
gptkbp:improves Model Efficiency
gptkbp:influenced_by gptkb:Mobile_Net
gptkb:Inception_Network
gptkb:Xception
gptkbp:introduced_in gptkb:2018
gptkbp:is_evaluated_by gptkb:Image_Net
gptkb:CIFAR-10
Inference Time
Top-1 and Top-5 Accuracy Metrics
FLOPs (Floating Point Operations)
gptkbp:is_optimized_for gptkb:mobile_devices
Real-time Applications
gptkbp:is_part_of gptkb:AI_Research
Deep Learning Community
gptkbp:is_related_to gptkb:Artificial_Intelligence
Deep Learning Frameworks
Hyperparameter Optimization
Computer Vision Tasks
Neural Architecture Search Algorithms
gptkbp:is_supported_by gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_used_in gptkb:Autonomous_Vehicles
Object Detection
Facial Recognition
Medical Imaging
Video Analysis
gptkbp:performance Top-1 accuracy of 82.7% on Image Net
Top-5 accuracy of 95.2% on Image Net
gptkbp:predecessor gptkb:NASNet-A
gptkbp:published_in gptkb:CVPR_2018
gptkbp:requires Large Computational Resources
gptkbp:successor gptkb:NASNet
gptkbp:supports gptkb:stage_adaptation
gptkbp:used_for Image Classification
gptkbp:uses gptkb:machine_learning
gptkbp:utilizes gptkb:Batch_Normalization
Dropout Regularization
gptkbp:bfsParent gptkb:NASNet
gptkbp:bfsLayer 6