NASNet-A

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:achieved_accuracy Top-1 accuracy of 82.7% on Image Net
gptkbp:composed_of fully connected layers
convolutional layers
pooling layers
gptkbp:designed_for image classification
gptkbp:developed_by gptkb:Google
gptkbp:has_variants NASNet-A Large
NASNet-A Mobile
https://www.w3.org/2000/01/rdf-schema#label NASNet-A
gptkbp:introduced_in gptkb:2017
gptkbp:is_evaluated_by gptkb:Image_Net
gptkb:CIFAR-10
gptkb:Pascal_VOC
gptkb:COCO_dataset
gptkb:CIFAR-100
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Keras
gptkbp:is_known_for high accuracy
low latency
high throughput
state-of-the-art performance
flexibility in architecture design
automated architecture search
gptkbp:is_optimized_for GPU performance
gptkbp:is_part_of NAS (Neural Architecture Search) framework
gptkbp:is_related_to gptkb:Artificial_Intelligence
deep learning
gptkbp:is_scalable cloud environments
edge devices
different hardware
gptkbp:is_trained_in large datasets
gptkbp:is_used_in gptkb:Telecommunications
gptkb:drones
gptkb:robotics
gptkb:smart_home_devices
augmented reality
financial forecasting
natural language processing
energy management
surveillance systems
weather prediction
object detection
self-driving cars
video analysis
facial recognition
retail analytics
medical image analysis
computer vision tasks
gaming AI
gptkbp:performance gptkb:Image_Net_competition
other architectures
gptkbp:predecessor gptkb:Inception-v4
gptkbp:successor gptkb:NASNet-B
gptkbp:uses reinforcement learning
gptkbp:utilizes transfer learning
gptkbp:bfsParent gptkb:NASNet
gptkbp:bfsLayer 6