Mobile Net

GPTKB entity

Statements (65)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:application Mobile devices
gptkbp:architecture Lightweight model
gptkbp:based_on Depthwise separable convolutions
gptkbp:community_support Open source
gptkbp:designed_for mobile and edge devices
gptkbp:developed_by gptkb:Google
gptkbp:evaluates FLOPs
Inference time
gptkbp:feature Low latency
Efficient computation
Reduced model size
gptkbp:has_variants gptkb:Mobile_Net_V1
gptkb:Mobile_Net_V2
gptkb:Mobile_Net_V3
https://www.w3.org/2000/01/rdf-schema#label Mobile Net
gptkbp:input_output varies
224x224
class probabilities
gptkbp:introduced_in gptkb:2017
gptkbp:is_a_framework_for gptkb:Tensor_Flow
gptkbp:is_optimized_for mobile and edge devices
gptkbp:latest_version gptkb:Mobile_Net_V1
gptkb:Mobile_Net_V2
gptkb:Mobile_Net_V3
gptkbp:license Apache License 2.0
gptkbp:orbital_period 4.2 million
gptkbp:performance Top-1 accuracy
Top-5 accuracy
gptkbp:provides efficient computation
gptkbp:provides_information_on gptkb:Image_Net
gptkbp:related_to gptkb:Artificial_Intelligence
Deep learning
Computer vision
gptkbp:release_year gptkb:2017
gptkbp:successor gptkb:Mobile_Net_V2
gptkb:Mobile_Net_V3
gptkbp:supports transfer learning
gptkbp:targets Edge devices
gptkbp:training Transfer learning
gptkbp:tuning Quantization
Pruning
gptkbp:use_case gptkb:wearable_technology
gptkb:virtual_reality
gptkb:Io_T_devices
gptkb:smartphone
gptkb:drones
gptkb:robotics
Medical imaging
Smart TVs
Tablets
Autonomous vehicles
Augmented reality
Video analysis
Object detection
Face recognition
Style transfer
Smart cameras
Semantic segmentation
Pose estimation
gptkbp:used_for Image classification
gptkbp:uses depthwise separable convolutions
gptkbp:bfsParent gptkb:Transformers
gptkb:neural_networks
gptkbp:bfsLayer 4