Linear models

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf statistical analysis
gptkbp:advantage Interpretability
Computational efficiency
gptkbp:assumes Linearity between input and output
gptkbp:basisFor Many machine learning algorithms
gptkbp:canBe Sparse
Multivariate
Univariate
Regularized
Unsupervised
Supervised
https://www.w3.org/2000/01/rdf-schema#label Linear models
gptkbp:include gptkb:Perceptron
gptkb:Logistic_regression
gptkb:Linear_regression
gptkb:Ridge_regression
gptkb:Lasso_regression
gptkb:Elastic_net
Support vector machine (linear kernel)
gptkbp:limitation Cannot model non-linear relationships
gptkbp:mathematicallyExpressedAs y = Xw + b
gptkbp:originatedIn 19th century
gptkbp:output Linear combination of inputs
gptkbp:parameter Weights
Bias
gptkbp:relatedTo gptkb:Generalized_linear_models
Nonlinear models
Polynomial regression
gptkbp:requires Homoscedasticity
Independence of errors
No multicollinearity
Feature scaling (sometimes)
Normality of errors (for inference)
gptkbp:trainer Gradient descent
Least squares
gptkbp:usedFor Prediction
Regression
Classification
Feature selection
gptkbp:usedIn gptkb:signal_processing
Finance
Time series analysis
Biology
Statistics
Social sciences
Data science
Machine learning
Econometrics
gptkbp:bfsParent gptkb:Linear_Models_in_Statistics
gptkb:Best_Linear_Unbiased_Estimator
gptkbp:bfsLayer 8