Lasso regression

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf gptkb:model
statistical analysis
regression analysis method
gptkbp:advantage can be biased for large coefficients
not ideal when all predictors are relevant
performs variable selection
produces sparse models
reduces model complexity
gptkbp:alsoKnownAs gptkb:Least_Absolute_Shrinkage_and_Selection_Operator
gptkbp:appliesTo gptkb:signal_processing
finance
genomics
bioinformatics
image analysis
gptkbp:assumes linear relationship between predictors and response
gptkbp:canBe high-dimensional data
multicollinearity
gptkbp:canSetCoefficientsToZero yes
gptkbp:category supervised learning
sparse modeling
gptkbp:contrastsWith gptkb:Ridge_regression
gptkbp:differenceFromRidge Lasso uses L1 penalty, Ridge uses L2 penalty
gptkbp:form minimize (1/2n)||y - Xβ||^2_2 + λ||β||_1
https://www.w3.org/2000/01/rdf-schema#label Lasso regression
gptkbp:implementedIn gptkb:SAS
gptkb:MATLAB
gptkb:scikit-learn
R
gptkbp:introduced gptkb:Robert_Tibshirani
gptkbp:introducedIn 1996
gptkbp:lambdaParameter controls strength of regularization
gptkbp:limitation can select at most n variables if n < p
can be unstable when predictors are highly correlated
gptkbp:objective minimize sum of squared errors plus lambda times sum of absolute values of coefficients
gptkbp:penalty L1 norm
gptkbp:relatedTo gptkb:Elastic_Net
gptkb:Ridge_regression
Subset selection
gptkbp:shrinksCoefficients yes
gptkbp:solvedBy gptkb:least_angle_regression_(LARS)
coordinate descent
proximal gradient methods
subgradient methods
gptkbp:usedFor feature selection
regularization
preventing overfitting
gptkbp:usedIn gptkb:generalized_linear_models
linear regression
gptkbp:bfsParent gptkb:Scikit-learn
gptkbp:bfsLayer 5