gptkbp:instanceOf
|
statistical analysis
Machine learning algorithm
|
gptkbp:alternativeName
|
Logistic model
Logit model
|
gptkbp:assumes
|
Independence of errors
No multicollinearity
Linearity in the logit
|
gptkbp:basedOn
|
gptkb:Logistic_function
|
gptkbp:canBeRegularizedWith
|
L1 regularization
L2 regularization
|
gptkbp:category
|
gptkb:Supervised_learning
gptkb:Generalized_linear_model
Predictive modeling
Classification algorithm
|
gptkbp:compatibleWith
|
Homoscedasticity
Normality of predictors
|
gptkbp:decisionBoundary
|
Linear
|
gptkbp:extendsTo
|
Multinomial logistic regression
Ordinal logistic regression
Regularized logistic regression
|
gptkbp:featureType
|
Continuous
Categorical
|
gptkbp:firstDescribed
|
gptkb:Pierre_François_Verhulst
|
gptkbp:form
|
Sigmoid function
|
https://www.w3.org/2000/01/rdf-schema#label
|
Logistic regression
|
gptkbp:implementedIn
|
gptkb:SAS
gptkb:SPSS
gptkb:scikit-learn
R
|
gptkbp:introducedIn
|
19th century
|
gptkbp:inventedBy
|
gptkb:David_Cox
|
gptkbp:lossFunction
|
Log loss
|
gptkbp:output
|
Probability
Discrete
|
gptkbp:parameter
|
Maximum likelihood estimation
|
gptkbp:predicts
|
Categorical outcome
|
gptkbp:range
|
0 to 1
|
gptkbp:relatedTo
|
gptkb:Linear_regression
gptkb:Generalized_linear_model
|
gptkbp:usedFor
|
Binary classification
Multiclass classification
|
gptkbp:usedIn
|
Finance
Marketing
Epidemiology
Social sciences
Medical research
|
gptkbp:bfsParent
|
gptkb:Sigmoid
|
gptkbp:bfsLayer
|
6
|