Logistic regression

GPTKB entity

Statements (48)
Predicate Object
gptkbp:instanceOf statistical analysis
Machine learning algorithm
gptkbp:alternativeName Logistic model
Logit model
gptkbp:assumes Independence of errors
No multicollinearity
Linearity in the logit
gptkbp:basedOn gptkb:Logistic_function
gptkbp:canBeRegularizedWith L1 regularization
L2 regularization
gptkbp:category gptkb:Supervised_learning
gptkb:Generalized_linear_model
Predictive modeling
Classification algorithm
gptkbp:compatibleWith Homoscedasticity
Normality of predictors
gptkbp:decisionBoundary Linear
gptkbp:extendsTo Multinomial logistic regression
Ordinal logistic regression
Regularized logistic regression
gptkbp:featureType Continuous
Categorical
gptkbp:firstDescribed gptkb:Pierre_François_Verhulst
gptkbp:form Sigmoid function
https://www.w3.org/2000/01/rdf-schema#label Logistic regression
gptkbp:implementedIn gptkb:SAS
gptkb:SPSS
gptkb:scikit-learn
R
gptkbp:introducedIn 19th century
gptkbp:inventedBy gptkb:David_Cox
gptkbp:lossFunction Log loss
gptkbp:output Probability
Discrete
gptkbp:parameter Maximum likelihood estimation
gptkbp:predicts Categorical outcome
gptkbp:range 0 to 1
gptkbp:relatedTo gptkb:Linear_regression
gptkb:Generalized_linear_model
gptkbp:usedFor Binary classification
Multiclass classification
gptkbp:usedIn Finance
Marketing
Epidemiology
Social sciences
Medical research
gptkbp:bfsParent gptkb:Sigmoid
gptkbp:bfsLayer 6